login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126966
Expansion of sqrt(1 - 4*x)/(1 - 2*x).
9
1, 0, -2, -8, -26, -80, -244, -752, -2362, -7584, -24892, -83376, -284324, -984672, -3455144, -12259168, -43908026, -158531392, -576352364, -2107982128, -7750490636, -28629222112, -106190978264, -395347083808, -1476813394916, -5533435084480, -20790762971864, -78316232088032
OFFSET
0,3
COMMENTS
Hankel transform is 2^n*(-1)^binomial(n+1, 2) = A120617(n). - Paul Barry, Feb 08 2008
LINKS
FORMULA
a(n) = -Sum_{j=0..n} ( 2^j*binomial(2n-2j, n-j)/(2n-2j-1) ). - Emeric Deutsch, Mar 25 2007
D-finite with recurrence: n*a(n) + 6*(1-n)*a(n-1) + 4*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011, corrected Feb 17 2020
a(n) ~ -4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
a(n) = 2^n*i + CatalanNumber(n)*hypergeom([1, n + 1/2], [n + 2], 2). - Peter Luschny, Aug 04 2020
a(n) = A028329(n) - A082590(n). - Mélika Tebni, Mar 08 2024
MAPLE
a := n -> -add(2^j*binomial(2*n-2*j, n-j)/(2*n-2*j-1), j=0..n):
seq(a(n), n=0..30); # Emeric Deutsch, Mar 25 2007
# second Maple program:
CatalanNumber := n -> binomial(2*n, n)/(n+1):
a := n -> 2^n*I + CatalanNumber(n)*simplify(hypergeom([1, n + 1/2], [n + 2], 2)):
seq(a(n), n=0..26); # Peter Luschny, Aug 04 2020
# third program:
A126966 := n -> 2*binomial(2*n, n) - add(2^(n-k)*binomial(2*k, k), k=0..n):
seq(A126966(n), n = 0 .. 27); # Mélika Tebni, Mar 08 2024
MATHEMATICA
CoefficientList[Series[Sqrt[1-4*x]/(1-2*x), {x, 0, 30}], x] (* G. C. Greubel, Jan 31 2017 *)
PROG
(PARI) Vec(sqrt(1-4*x)/(1-2*x) + O(x^30)) \\ G. C. Greubel, Jan 31 2017
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)/(1-2*x) )); // G. C. Greubel, Jan 29 2020
(Sage)
def A126966_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( sqrt(1-4*x)/(1-2*x) ).list()
A126966_list(30) # G. C. Greubel, Jan 29 2020
(GAP) List([0..30], n-> (-1)*Sum([0..n], j-> 2^j*Binomial(2*(n-j), n-j)/(2*(n-j) -1) )); # G. C. Greubel, Jan 29 2020
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 22 2007
STATUS
approved