login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126967
Expansion of e.g.f.: sqrt(1+4*x)/(1+2*x).
4
1, 0, -4, 48, -624, 9600, -175680, 3790080, -95235840, 2752081920, -90328089600, 3328103116800, -136191650918400, 6131573025177600, -301213549769932800, 16030999766605824000, -918678402394841088000, 56387623092958789632000, -3690023220507773140992000
OFFSET
0,3
COMMENTS
A row of an array that is under investigation.
LINKS
FORMULA
D-finite with recurrence: a(n) +6*(n-1)*a(n-1) +4*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 23 2020
MAPLE
seq(coeff(series( sqrt(1+4*x)/(1+2*x), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jan 29 2020
MATHEMATICA
nmax=20; CoefficientList[Series[Sqrt[1 + 4 x] / (1 + 2 x), {x, 0, nmax}], x] Range[0, nmax]! (* Vincenzo Librandi, Jan 24 2020 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Sqrt(1+4*x)/(1+2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Jan 24 2020
(PARI) my(x='x+O('x^30)); Vec(serlaplace( sqrt(1+4*x)/(1+2*x) )) \\ G. C. Greubel, Jan 29 2020
(Sage) [factorial(n)*( sqrt(1+4*x)/(1+2*x) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jan 29 2020
CROSSREFS
Cf. A126966.
Sequence in context: A220325 A265419 A226705 * A098402 A333481 A003774
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 22 2007
STATUS
approved