login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126964
a(n) = 2*n*(6*n-1).
2
0, 10, 44, 102, 184, 290, 420, 574, 752, 954, 1180, 1430, 1704, 2002, 2324, 2670, 3040, 3434, 3852, 4294, 4760, 5250, 5764, 6302, 6864, 7450, 8060, 8694, 9352, 10034, 10740, 11470, 12224, 13002, 13804, 14630, 15480, 16354, 17252, 18174, 19120, 20090, 21084
OFFSET
0,2
REFERENCES
V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
FORMULA
a(n) = 24*n + a(n-1) - 14 for n>0, a(0)=0. - Vincenzo Librandi, Nov 23 2010
From Harvey P. Dale, Nov 19 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2, a(0)=0, a(1)=10, a(2)=44.
G.f.: (10*x + 14*x^2)/(1 - x)^3. (End)
From Ilya Gutkovskiy, Dec 04 2016: (Start)
Sum_{n>=1} 1/a(n) = (4*log(2) + 3*log(3) - sqrt(3)*Pi)/4 = 0.15675687388...
E.g.f.: 2*x*(5 + 6*x)*exp(x). (End)
a(n) = Sum_{i=n..5*n-1} i. - Wesley Ivan Hurt, Dec 04 2016
MAPLE
A126964:=n->2*n*(6*n-1): seq(A126964(n), n=0..60); # Wesley Ivan Hurt, Dec 03 2016
MATHEMATICA
Table[2n(6n-1), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 10, 44}, 50] (* Harvey P. Dale, Nov 19 2011 *)
PROG
(Magma) [2*n*(6*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Dec 03 2016
(PARI) a(n)=2*n*(6*n-1) \\ Charles R Greathouse IV, Jun 16 2017
(Sage) [2*binomial(6*n, 2)/3 for n in (0..50)] # G. C. Greubel, Jan 29 2020
(GAP) List([0..50], n-> 2*Binomial(6*n, 2)/3 ); # G. C. Greubel, Jan 29 2020
CROSSREFS
Sequence in context: A346820 A003866 A057517 * A256050 A257052 A008532
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 21 2007
STATUS
approved