login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126963
Numerators of sequence defined by f(0)=1, f(1)=5/4; f(n) = ( (6*n-1)*f(n-1) - (2*n-1)*f(n-2) )/(4n).
2
1, 5, 43, 177, 2867, 11531, 92479, 370345, 11857475, 47442055, 379582629, 1518418695, 24295375159, 97182800711, 777467420263, 3109879375897, 199032580597603, 796130905791967, 6369049515119561, 25476202478636219, 407619274119811709, 1630477163761481141
OFFSET
0,2
LINKS
D. Doster, Problem 1318, Three Term Recurrence, Math. Magazine, 63 (1990), 127-128.
FORMULA
f(n) = Sum_{k=0..n} binomial(-1/2,k)*(-1/2)^k.
f(n) -> sqrt(2) as n -> oo.
G.f.: (sqrt(-x)*arccsc(1-x)/sqrt(2)-(Pi*i*sqrt(x))/sqrt(2)^3)/x. - Vladimir Kruchinin, Oct 10 2012
a(n) = numerator( Sum_{k=0..n} binomial(2*k, k)/8^k ). - G. C. Greubel, Jan 29 2020
MAPLE
seq( numer( add(binomial(2*k, k)/8^k, k=0..n) ), n=0..25); # G. C. Greubel, Jan 29 2020
MATHEMATICA
a[n_] := Sqrt[2](1-(Gamma[1/2+n] Hypergeometric2F1[n, 1/2+n, 1+n, -1])/(Sqrt[Pi] Gamma[1+n])); Table[Numerator[FullSimplify[a[n]]], {n, 20}] (* Gerry Martens, Aug 09 2015 *)
f[n_]:= If[n==0, 1, If[n==1, 5/4, ((6*n-1)*f[n-1]-(2*n-1)*f[n-2])/(4*n)]];
Table[Numerator[f[n]], {n, 0, 25}] (* G. C. Greubel, Jan 29 2020 *)
PROG
(PARI) A126963(n)=numerator(sum(k=0, n, binomial(-1/2, k)/(-2)^k)) \\ f(n)=if(n>1, ((6*n-1)*f(n-1)-(2*n-1)*f(n-2))/(4*n), (5/4)^n) yields the same results. - M. F. Hasler, Aug 11 2015
(Magma) [Numerator( &+[Binomial(2*k, k)/8^k: k in [0..n]] ): n in [0..25]]; // G. C. Greubel, Jan 29 2020
(Sage) [numerator( sum(binomial(2*k, k)/8^k for k in (0..n)) ) for n in (0..25)] # G. C. Greubel, Jan 29 2020
(GAP) List([0..25], n-> NumeratorRat( Sum([0..n], k-> Binomial(2*k, k)/8^k) )); # G. C. Greubel, Jan 29 2020
CROSSREFS
Denominators are in A088802.
Sequence in context: A152866 A102851 A173554 * A221874 A317282 A182191
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Mar 20 2007
STATUS
approved