login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221874
Numbers m such that 10*m^2 + 6 is a square.
8
1, 5, 43, 191, 1633, 7253, 62011, 275423, 2354785, 10458821, 89419819, 397159775, 3395598337, 15081612629, 128943316987, 572704120127, 4896450447169, 21747674952197, 185936173675435, 825838944063359, 7060678149219361, 31360132199455445
OFFSET
1,2
COMMENTS
The Diophantine equation 10*x^2 + k = y^2, for |k| < 10, has integer solutions with the following k values:
k = 1, the nonnegative x values are in A084070;
k = -1, " A097315;
k = 4, " 2*A084070;
k = -4, " 2*A097315;
k = 6, " this sequence;
k = -6, " A221875;
k = 9, " A075836;
k = -9, " A052454.
a(n+1)/a(n) tends alternately to (sqrt(2)+sqrt(5))^2/3 and (2*sqrt(2)+sqrt(5))^2/3; a(n+2)/a(n) tends to A176398^2.
FORMULA
G.f.: x*(1+x)*(1+4*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2)).
a(n) = ((-5*(-1)^n+2*t)*(3+t)^(2*floor(n/2)) - (5*(-1)^n+2*t)*(3-t)^(2*floor(n/2)))/10, where t=sqrt(10).
a(n) = 2*A129556(n) + 1.
a(n)*a(n-3) - a(n-1)*a(n-2) = -36 + 12(-1)^n.
MAPLE
A221874:=proc(q)
local n;
for n from 1 to q do if type(sqrt(10*n^2+6), integer) then print(n);
fi; od; end:
A221874(100000000000000000); # Paolo P. Lava, Feb 11 2013
MATHEMATICA
LinearRecurrence[{0, 38, 0, -1}, {1, 5, 43, 191}, 22]
PROG
(Magma) m:=22; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)*(1+4*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2))));
(Maxima) makelist(expand(((-5*(-1)^n+2*sqrt(10))*(3+sqrt(10))^(2*floor(n/2))-(5*(-1)^n+2*sqrt(10))*(3-sqrt(10))^(2*floor(n/2)))/10), n, 1, 22);
CROSSREFS
Subsequence of A031150.
Sequence in context: A102851 A173554 A126963 * A317282 A182191 A038140
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 28 2013
STATUS
approved