The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097315 Pell equation solutions (3*b(n))^2 - 10*a(n)^2 = -1 with b(n) = A097314(n), n >= 0. 21
 1, 37, 1405, 53353, 2026009, 76934989, 2921503573, 110940200785, 4212806126257, 159975692596981, 6074863512559021, 230684837784645817, 8759948972303982025, 332647376109766671133, 12631840343198829521029, 479677285665445755127969, 18215105014943739865341793, 691694313282196669127860165 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hypotenuses of primitive Pythagorean triples in A195616 and A195617. - Clark Kimberling, Sep 22 2011 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..631 A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv. Tanya Khovanova, Recursive Sequences Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16. Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (38,-1). FORMULA a(n) = S(n, 38) - S(n-1, 38) = T(2*n+1, sqrt(10))/sqrt(10), with Chebyshev polynomials of the second and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle. a(n) = ((-1)^n)*S(2*n, 6*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310. G.f.: (1-x)/(1-38*x+x^2). a(n) = 38*a(n-1) - a(n-2) for n > 1. - Philippe Deléham, Nov 18 2008 a(n) = sqrt(2+(19-6*sqrt(10))^(1+2*n) + (19+6*sqrt(10))^(1+2*n))/(2*sqrt(10)). - Gerry Martens, Jun 04 2015 a(n) = A078987(n) - A078987(n-1). - R. J. Mathar, Dec 05 2015 a(n) = A005668(2*n+1). - Michael Somos, Feb 24 2023 EXAMPLE (x,y) = (3,1), (117,37), (4443,1405), ... give the positive integer solutions to x^2 - 10*y^2 = -1. G.f. = 1 + 37*x + 1405*x^2 + 53353*x^3 + ... - Michael Somos, Feb 24 2023 MATHEMATICA CoefficientList[Series[(1-x)/(1-38x+x^2), {x, 0, 20}], x] (* Michael De Vlieger, Feb 04 2017 *) LinearRecurrence[{38, -1}, {1, 37}, 21] (* G. C. Greubel, Aug 01 2019 *) PROG (PARI) Vec((1-x)/(1-38*x+x^2) + O(x^20)) \\ Michel Marcus, Jun 04 2015 (Magma) I:=[1, 37]; [n le 2 select I[n] else 38*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 01 2019 (Sage) ((1-x)/(1-38*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019 (GAP) a:=[1, 37];; for n in [3..20] do a[n]:=38*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019 CROSSREFS Cf. A078987 (partial sums), A097314, A195616, A195617, A049310, A053120, A005668. Row 3 of array A188647. Cf. A221874. Cf. similar sequences listed in A238379. Sequence in context: A189061 A009981 A370334 * A158741 A094490 A231543 Adjacent sequences: A097312 A097313 A097314 * A097316 A097317 A097318 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Aug 31 2004 EXTENSIONS Typo in recurrence formula corrected by Laurent Bonaventure (bonave(AT)free.fr), Oct 03 2010 More terms added by Indranil Ghosh, Feb 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 18:46 EDT 2024. Contains 371644 sequences. (Running on oeis4.)