login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097314
Pell equation solutions (3*a(n))^2 - 10*b(n)^2 = -1 with b(n) = A097315(n), n >= 0.
9
1, 39, 1481, 56239, 2135601, 81096599, 3079535161, 116941239519, 4440687566561, 168629186289799, 6403468391445801, 243163169688650639, 9233796979777278481, 350641122061847931639, 13315128841370444123801, 505624254850015028772799, 19200406555459200649242561, 729109824852599609642444519, 27686972937843325965763649161
OFFSET
0,2
FORMULA
G.f.: (1 + x)/(1 - 38*x + x^2).
a(n) = S(n, 38) + S(n-1, 38) = S(2*n, 2*sqrt(10)), with Chebyshev polynomials of the second kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = (-1)^n*T(2*n + 1, 3*i)/(3*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = ((3 + sqrt(10))*(19 + 6*sqrt(10))^n - ((-3 + sqrt(10))*(19 - 6*sqrt(10))^n))/6. - Gerry Martens, Jul 09 2015
a(n) = (1/3)*sinh((2*n + 1)*arcsinh(3)). - Bruno Berselli, Apr 03 2018
EXAMPLE
(x,y) = (3,1), (117,37), (4443,1405), ... give the positive integer solutions to x^2 - 10*y^2 = -1.
MATHEMATICA
LinearRecurrence[{38, -1}, {1, 39}, 20] (* Ray Chandler, Aug 11 2015 *)
PROG
(PARI) Vec((1+x)/(1-38*x+x^2) + O(x^20)) \\ Michel Marcus, Jul 10 2015
CROSSREFS
Cf. A078987 for S(n, 38).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.
Sequence in context: A078970 A020303 A235973 * A162871 A163222 A163668
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
EXTENSIONS
More terms from Indranil Ghosh, Feb 04 2017
STATUS
approved