login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221875
Numbers m such that 10*m^2 - 6 is a square.
4
1, 7, 31, 265, 1177, 10063, 44695, 382129, 1697233, 14510839, 64450159, 551029753, 2447408809, 20924619775, 92937084583, 794584521697, 3529161805345, 30173287204711, 134015211518527, 1145790329257321, 5089048875898681, 43509859224573487
OFFSET
1,2
COMMENTS
See the first two comments on A221874.
For the corresponding numbers whose square is 10*m^2 - 6, see A281647. - Jon E. Schoenfield, Aug 05 2023
FORMULA
G.f.: x*(1-x)*(1+8*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2)).
a(n) = ((5-t*(-1)^n)*(3+t)^(2*floor(n/2)) + (5+t*(-1)^n)*(3-t)^(2*floor(n/2)))/10, where t=sqrt(10).
a(n)*a(n-3) - a(n-1)*a(n-2) = 36 + 12(-1)^n.
MATHEMATICA
LinearRecurrence[{0, 38, 0, -1}, {1, 7, 31, 265}, 22]
PROG
(Magma)
m:=22; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1+8*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2))));
(Maxima)
makelist(expand(((5-sqrt(10)*(-1)^n)*(3+sqrt(10))^(2*floor(n/2))+(5+sqrt(10)*(-1)^n)*(3-sqrt(10))^(2*floor(n/2)))/10), n, 1, 22);
(Magma) I:=[1, 7, 31, 265]; [n le 4 select I[n] else 38*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 25 2013
CROSSREFS
Sequence in context: A241456 A094711 A333735 * A143564 A352411 A344787
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 28 2013
STATUS
approved