login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281647
Solutions x to the negative Pell equation x^2 - 10*y^2 = -6 with x > y > 0.
2
2, 22, 98, 838, 3722, 31822, 141338, 1208398, 5367122, 45887302, 203809298, 1742509078, 7739386202, 66169457662, 293892866378, 2512696882078, 11160189536162, 95416312061302, 423793309507778, 3623307161447398, 16092985571759402, 137590255822939822
OFFSET
1,1
COMMENTS
The corresponding values of y are in A221875.
FORMULA
G.f.: 2*x*(1 + x)*(1 + 10*x + x^2) / ((1 + 6*x - x^2)*(1 - 6*x - x^2)).
a(n) = 38*a(n-2) - a(n-4) for n>4.
a(n) = ((3-r)^n + (-3-r)^n*(-3+r) - 3*(-3+r)^n - r*(-3+r)^n + (3+r)^n)/2, where r=sqrt(10).
EXAMPLE
22 is in the sequence because (x, y) = (22, 7) is a solution to x^2 - 10*y^2 = -6.
MATHEMATICA
CoefficientList[ Series[(2 (1 + 11x + 11x^2 + x^3))/(1 - 38x^2 + x^4), {x, 0, 21}], x] (* or *)
LinearRecurrence[{0, 38, 0, -1}, {2, 22, 98, 838}, 22] (* Robert G. Wilson v, Jan 26 2017 *)
PROG
(PARI) Vec(2*x*(1 + x)*(1 + 10*x + x^2) / ((1 + 6*x - x^2)*(1 - 6*x - x^2)) + O(x^30))
CROSSREFS
Cf. A221875.
Sequence in context: A291915 A172229 A212894 * A344498 A281140 A105237
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 26 2017
STATUS
approved