|
|
A281647
|
|
Solutions x to the negative Pell equation x^2 - 10*y^2 = -6 with x > y > 0.
|
|
1
|
|
|
2, 22, 98, 838, 3722, 31822, 141338, 1208398, 5367122, 45887302, 203809298, 1742509078, 7739386202, 66169457662, 293892866378, 2512696882078, 11160189536162, 95416312061302, 423793309507778, 3623307161447398, 16092985571759402, 137590255822939822
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The corresponding values of y are in A221875.
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,38,0,-1).
|
|
FORMULA
|
G.f.: 2*x*(1 + x)*(1 + 10*x + x^2) / ((1 + 6*x - x^2)*(1 - 6*x - x^2)).
a(n) = 38*a(n-2) - a(n-4) for n>4.
a(n) = ((3-r)^n + (-3-r)^n*(-3+r) - 3*(-3+r)^n - r*(-3+r)^n + (3+r)^n)/2, where r=sqrt(10).
|
|
EXAMPLE
|
22 is in the sequence because (x, y) = (22, 7) is a solution to x^2 - 10*y^2 = -6.
|
|
MATHEMATICA
|
CoefficientList[ Series[(2 (1 + 11x + 11x^2 + x^3))/(1 - 38x^2 + x^4), {x, 0, 21}], x] (* or *)
LinearRecurrence[{0, 38, 0, -1}, {2, 22, 98, 838}, 22] (* Robert G. Wilson v, Jan 26 2017 *)
|
|
PROG
|
(PARI) Vec(2*x*(1 + x)*(1 + 10*x + x^2) / ((1 + 6*x - x^2)*(1 - 6*x - x^2)) + O(x^30))
|
|
CROSSREFS
|
Cf. A221875.
Sequence in context: A291915 A172229 A212894 * A344498 A281140 A105237
Adjacent sequences: A281644 A281645 A281646 * A281648 A281649 A281650
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Colin Barker, Jan 26 2017
|
|
STATUS
|
approved
|
|
|
|