login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212894
Number of (w,x,y,z) with all terms in {0,...,n} and (least gapsize)=1.
2
0, 2, 22, 92, 246, 520, 950, 1572, 2422, 3536, 4950, 6700, 8822, 11352, 14326, 17780, 21750, 26272, 31382, 37116, 43510, 50600, 58422, 67012, 76406, 86640, 97750, 109772, 122742, 136696, 151670, 167700, 184822, 203072, 222486, 243100
OFFSET
0,2
COMMENTS
The gapsizes are |w-x|, |x-y|, |y-z|. Every term is even. For a guide to related sequences, see A211795.
FORMULA
a(n) = 2*(n-1)*(3*n^2-3*n+5) with n>1, a(0)=0, a(1)=2.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>=6.
G.f.: f(x)/g(x), where f(x)=2*(x+7*x^2+8*x^3+x^4+x^5) and g(x)=(1-x)^4.
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Min[Abs[w - x], Abs[x - y], Abs[y - z]] == 1, s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 40]] (* A212894 *)
m/2 (* integers *)
CoefficientList[Series[2*(x+7*x^2+8*x^3+x^4+x^5) /(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 04 2012 *)
PROG
(Magma) I:=[0, 2, 22, 92, 246, 520]; [n le 6 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
CROSSREFS
Cf. A211795.
Sequence in context: A050853 A291915 A172229 * A281647 A344498 A281140
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 30 2012
STATUS
approved