The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212896 Number of (w,x,y,z) with all terms in {0,...,n} and (least gapsize)<2. 2
 1, 16, 79, 240, 551, 1066, 1839, 2924, 4375, 6246, 8591, 11464, 14919, 19010, 23791, 29316, 35639, 42814, 50895, 59936, 69991, 81114, 93359, 106780, 121431, 137366, 154639, 173304, 193415, 215026, 238191, 262964, 289399, 317550 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The gapsizes are |w-x|, |x-y|, |y-z|. For a guide to related sequences, see A211795. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>=6. G.f.: f(x)/g(x), where f(x) = 1+12*x+21*x^2+16*x^3+2*x^4+2*x^5 and g(x) = (1-x)^4. a(n) = 9*n^3-6*n^2+20*n-9 with n>1, a(0)=1, a(1)=16. [Bruno Berselli, Jun 12 2012] MATHEMATICA t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Min[Abs[w - x], Abs[x - y], Abs[y - z]] <= 1, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 40]] (* A212896 *) CoefficientList[Series[(1+12*x+21*x^2+16*x^3+2*x^4+2*x^5) /(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 04 2012 *) PROG (Magma) I:=[1, 16, 79, 240, 551, 1066]; [n le 6 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 20123 CROSSREFS Cf. A211795. Sequence in context: A212563 A210324 A250231 * A250279 A269584 A044203 Adjacent sequences: A212893 A212894 A212895 * A212897 A212898 A212899 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 31 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 05:26 EST 2023. Contains 367468 sequences. (Running on oeis4.)