login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212898
Number of (w,x,y,z) with all terms in {0,...,n} and (least gapsize)<=2.
3
1, 16, 81, 254, 609, 1234, 2215, 3640, 5599, 8182, 11479, 15580, 20575, 26554, 33607, 41824, 51295, 62110, 74359, 88132, 103519, 120610, 139495, 160264, 183007, 207814, 234775, 263980, 295519, 329482, 365959, 405040, 446815, 491374
OFFSET
0,2
COMMENTS
The gapsizes are |w-x|, |x-y|, |y-z|.
a(n)+A212899(n) = (n+1)^4.
For a guide to related sequences, see A211795.
FORMULA
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>=9.
G.f.: (1 + 12*x + 23*x^2 + 22*x^3 + 16*x^4 + 14*x^5 - 2*x^6 + 2*x^7 + 2*x^8)/(1 - x)^4.
a(n) = 15*n^3-48*n^2+144*n-161 with n>4, a(0)=1, a(1)=16, a(2)=81, a(3)=254, a(4)=609. [Bruno Berselli, Jun 12 2012]
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Min[Abs[w - x], Abs[x - y], Abs[y - z]] <= 2, s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 40]] (* A212898 *)
CoefficientList[Series[(1+12*x+23*x^2+22*x^3+16*x^4+14*x^5-2*x^6+ 2*x^7+ 2*x^8)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 04 2012 *)
CROSSREFS
Cf. A211795.
Sequence in context: A224135 A265154 A268198 * A212145 A250362 A217261
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 31 2012
STATUS
approved