login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212145
Number of (w,x,y,z) with all terms in {1,...,n} and w<2x+y+z.
2
0, 1, 16, 81, 255, 621, 1285, 2377, 4050, 6481, 9870, 14441, 20441, 28141, 37835, 49841, 64500, 82177, 103260, 128161, 157315, 191181, 230241, 275001, 325990, 383761, 448890, 521977, 603645, 694541, 795335, 906721, 1029416, 1164161
OFFSET
0,3
COMMENTS
A212145(n)+A212087(n)=4^n. For a guide to related sequences, see A211795.
FORMULA
a(n) = 4*a(n-1)-5*a(n-2)+5*a(n-4)-4*a(n-5)+a(n-6).
a(n) = (3-3*(-1)^n-8*n-4*n^2+8*n^3+94*n^4)/96. - Colin Barker, Nov 21 2014
G.f.: -x*(x^4+11*x^3+22*x^2+12*x+1) / ((x-1)^5*(x+1)). - Colin Barker, Nov 21 2014
MAPLE
A212145:=n->(3-3*(-1)^n-8*n-4*n^2+8*n^3+94*n^4)/96: seq(A212145(n), n=0..40); # Wesley Ivan Hurt, Nov 21 2014
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w < 2 x + y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 60]] (* A212145 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
CoefficientList[Series[x (x^4 + 11 x^3 + 22 x^2 + 12 x + 1) / ((1 - x)^5 (x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)
LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 1, 16, 81, 255, 621}, 34] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(0, Vec(-x*(x^4+11*x^3+22*x^2+12*x+1)/((x-1)^5*(x+1)) + O(x^100))) \\ Colin Barker, Nov 21 2014
(Magma) [(3-3*(-1)^n-8*n-4*n^2+8*n^3+94*n^4)/96 : n in [0..40]]; // Wesley Ivan Hurt, Nov 21 2014
CROSSREFS
Cf. A211795.
Sequence in context: A265154 A268198 A212898 * A250362 A217261 A372405
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 02 2012
STATUS
approved