OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
FORMULA
a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
From Colin Barker, Dec 10 2015: (Start)
a(n) = 1/96*(82*n^4+36*n^3-16*n^2-6*((-1)^n-1)*n+9*((-1)^n-1)).
G.f.: x*(1+13*x+31*x^2+27*x^3+10*x^4) / ((1-x)^5*(1+x)^2).
(End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x <= 2 y + 2 z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212563 *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 1, 16, 78, 240, 577, 1182}, 40] (* Harvey P. Dale, Aug 28 2020 *)
PROG
(PARI) concat(0, Vec(x*(1+13*x+31*x^2+27*x^3+10*x^4) / ((1-x)^5*(1+x)^2) + O(x^50))) \\ Colin Barker, Dec 10 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 21 2012
STATUS
approved