OFFSET
0,4
COMMENTS
For a guide to related sequences, see A211795.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
FORMULA
a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7).
From Colin Barker, Dec 05 2015: (Start)
a(n) = (1/96)*(2*n*(3*((-1)^n-1) + (n-2)*n*(7*n-4)) - 9*(-1)^n+9).
G.f.: x^3*(3+7*x+3*x^2+x^3) / ((1-x)^5*(1+x)^2). (End)
E.g.f.: (x*(7*x^3 + 24*x^2 + 3*x - 9)*cosh(x) + (7*x^4 + 24*x^3 + 3*x^2 - 3*x + 9)*sinh(x))/48. - Stefano Spezia, Jul 12 2023
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x > 2 y + 2 z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212564 *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 0, 0, 3, 16, 48, 114}, 50] (* Harvey P. Dale, Apr 18 2023 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(3+7*x+3*x^2+x^3) / ((1-x)^5*(1+x)^2) + O(x^100))) \\ Colin Barker, Dec 05 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 21 2012
STATUS
approved