login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346556
8-Sondow numbers: numbers k such that p^s divides k/p + 8 for every prime power divisor p^s of k.
7
1, 3, 16, 48, 336, 14448, 376464, 17716019376, 419963172816
OFFSET
1,2
COMMENTS
Numbers k such that A235137(k) == 8 (mod k).
A positive integer k is a 8-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 8 for every prime power divisor p^s of k.
2) 8/k + Sum_{prime p|k} 1/p is an integer.
3) 8 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 8 (mod k).
Other numbers in the sequence: 17716019376, 419963172816, 67923372668477507285654170088688
LINKS
J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
MATHEMATICA
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]]
Select[Range[400000], Sondow[8][#]&]
CROSSREFS
(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, this sequence, A346557.
Sequence in context: A362007 A212564 A222843 * A004320 A089363 A000574
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(8)-a(9) verified by Martin Ehrenstein, Feb 04 2022
STATUS
approved