Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 18 2022 00:28:35
%S 1,3,16,48,336,14448,376464,17716019376,419963172816
%N 8-Sondow numbers: numbers k such that p^s divides k/p + 8 for every prime power divisor p^s of k.
%C Numbers k such that A235137(k) == 8 (mod k).
%C A positive integer k is a 8-Sondow number if satisfies any of the following equivalent properties:
%C 1) p^s divides k/p + 8 for every prime power divisor p^s of k.
%C 2) 8/k + Sum_{prime p|k} 1/p is an integer.
%C 3) 8 + Sum_{prime p|k} k/p == 0 (mod k).
%C 4) Sum_{i=1..k} i^phi(k) == 8 (mod k).
%C Other numbers in the sequence: 17716019376, 419963172816, 67923372668477507285654170088688
%H Github, <a href="https://jonathansondow.github.io/">Jonathan Sondow (1943 - 2020)</a>
%H J. M. Grau, A. M. Oller-Marcén and D. Sadornil, <a href="https://arxiv.org/abs/2111.14211">On µ-Sondow Numbers</a>, arXiv:2111.14211 [math.NT], 2021.
%H J. M. Grau, A. M. Oller-Marcen and J. Sondow, <a href="https://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n</a>, arXiv:1309.7941 [math.NT], 2013-2014.
%t Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
%t Select[Range[400000],Sondow[8][#]&]
%Y Cf. A054377, A007850, A235137, A348058, A348059.
%Y (-1) and (-2) -Sondow numbers: A326715, A330069.
%Y 1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, this sequence, A346557.
%K nonn,more
%O 1,2
%A _José María Grau Ribas_, Feb 04 2022
%E a(8)-a(9) verified by _Martin Ehrenstein_, Feb 04 2022