login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362007
Fourth Lie-Betti number of a path graph on n vertices.
3
0, 0, 3, 16, 48, 107, 203, 347, 551, 828, 1192, 1658, 2242, 2961, 3833, 4877, 6113, 7562, 9246, 11188, 13412, 15943, 18807, 22031, 25643, 29672, 34148, 39102, 44566, 50573, 57157, 64353, 72197, 80726, 89978, 99992, 110808
OFFSET
1,3
COMMENTS
Sequence T(n,4) in A360571.
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Path Graph.
FORMULA
a(1) = a(2) = 0, a(3) = 3, a(n) = (n^4 + 18*n^3 - 97*n^2 + 174*n - 168)/24 for n >= 4.
a(n) = A011379(n-3) + A006002(n-4) + A001105(n-3) + A056106(n-2) + A000027(n-3) + A000332(n-3) + A000217(n-5) + A000027(n-4) for n >= 5.
PROG
(Python)
def A362007(n):
values = [0, 0, 3]
for i in range(4, n+1):
result = (i**4 + 18*i**3 - 97*i**2 + 174*i - 168)/24
values.append(int(result))
return values
CROSSREFS
Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230.
Sequence in context: A296947 A255211 A172482 * A212564 A222843 A346556
KEYWORD
nonn
AUTHOR
Samuel J. Bevins, Apr 05 2023
EXTENSIONS
a(34) and Python program corrected by Robert C. Lyons, Apr 17 2023
STATUS
approved