login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A056106
Second spoke of a hexagonal spiral.
30
1, 3, 11, 25, 45, 71, 103, 141, 185, 235, 291, 353, 421, 495, 575, 661, 753, 851, 955, 1065, 1181, 1303, 1431, 1565, 1705, 1851, 2003, 2161, 2325, 2495, 2671, 2853, 3041, 3235, 3435, 3641, 3853, 4071, 4295, 4525, 4761, 5003, 5251, 5505, 5765, 6031, 6303
OFFSET
0,2
COMMENTS
First differences of A027444. - J. M. Bergot, Jun 04 2012
Numbers of the form ((h^2+h+1)^2+(-h^2+h+1)^2+(h^2+h-1)^2)/(h^2-h+1) for h=n-1. - Bruno Berselli, Mar 13 2013
For n > 0: 2*a(n) = A058331(n) + A001105(n) + A001844(n-1) = A251599(3*n-2) + A251599(3*n-1) + A251599(3*n). - Reinhard Zumkeller, Dec 13 2014
For all n >= 6, a(n+1) expressed in base n is "353". - Mathew Englander, Jan 06 2021
LINKS
Henry Bottomley, Spokes of a hexagonal spiral (illustration of initial terms).
FORMULA
a(n) = 3*n^2 - n + 1.
a(n) = a(n-1) + 6*n - 4 = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (1+2*x+3*x^2)*exp(x). - Paul Barry, Mar 13 2003
a(n) = A096777(3*n) for n>0. - Reinhard Zumkeller, Dec 29 2007
G.f.: (1+5*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(n) = n*A002061(n+1) - (n-1)*A002061(n). - Bruno Berselli, Jan 15 2013
a(-n) = A056108(n). - Bruno Berselli, Mar 13 2013
MATHEMATICA
Table[3*n^2 - n + 1, {n, 0, 50}] (* G. C. Greubel, Jul 19 2017 *)
PROG
(Magma) I:=[1, 3]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2)+6: n in [1..50]]; // Vincenzo Librandi, Nov 14 2011
(PARI) a(n) = 3*n^2-n+1;
(Haskell)
a056106 n = n * (3 * n - 1) + 1 -- Reinhard Zumkeller, Dec 13 2014
CROSSREFS
First differences of A053698, A027444, and A188947.
Cf. A113524 (semiprime terms), A002061.
Other spirals: A054552.
Sequence in context: A185258 A118436 A293413 * A320035 A147382 A212971
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 09 2000
STATUS
approved