login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118436
Column 0 of triangle A118435.
3
1, 1, -3, -11, 25, 41, -43, 29, -335, -1199, 3117, 6469, -10295, -8839, -16123, -108691, 354145, 873121, -1721763, -2521451, 1476985, -6699319, 34182197, 103232189, -242017775, -451910159, 597551757, 130656229, 2465133865, 10513816601, -29729597083, -66349305331
OFFSET
0,3
COMMENTS
Binomial transform of A118434 = (1, 1, 3, 11, 25, 41, 43, -29, -335, -1199, ...). - Gary W. Adamson, Sep 19 2008
FORMULA
G.f.: (1 + x + 2*x^2 - 6*x^3 + 29*x^4 + 5*x^5)/((1-x^2)*(1 + 6*x^2 + 25*x^4)).
MATHEMATICA
LinearRecurrence[{0, -5, 0, -19, 0, 25}, {1, 1, -3, -11, 25, 41}, 32] (* Jean-François Alcover, Apr 08 2024 *)
CoefficientList[Series[(1+x+2x^2-6x^3+29x^4+5x^5)/((1-x^2)(1+6x^2+25x^4)), {x, 0, 40}], x] (* Harvey P. Dale, Oct 17 2024 *)
PROG
(PARI) {a(n)=polcoeff((1+x+2*x^2-6*x^3+29*x^4+5*x^5)/(1-x^2)/(1+6*x^2+25*x^4+x*O(x^n)), n)}
CROSSREFS
Cf. A118434, A118435 (triangle), A118437 (row sums).
Sequence in context: A112051 A231068 A185258 * A293413 A056106 A320035
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 28 2006
STATUS
approved