OFFSET
0,3
COMMENTS
Conjecture: a(n) ~ e*n as n->infinity.
Conjecture: a(n) <= 3n for all n.
The second one would imply: A000149(n) = floor(Sum_{k=0..3n} (n^k)/(k!)).
EXAMPLE
a(3) = 8 since floor(e^3) = 20, floor(Sum_{k=0..8} (n^k)/(k!)) = 20 and "8" is the minimum because floor(Sum_{k=0..7} (n^k)/(k!)) = 19.
MATHEMATICA
f[n_, m_] := Floor[Sum[(n^k)/(k!), {k, 0, m}]] - Floor[E^n];
a[n_] := Min[Flatten[Position[Table[f[n, m], {m, 0, 150}], 0]]] - 1;
Table[a[n], {n, 1, 50}]
PROG
(PARI) a(n) = my(m=0, x=floor(exp(n)), y=1); while(floor(y) != x, m++; y += n^m/m!); m; \\ Michel Marcus, Apr 14 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Luca Onnis, Apr 03 2023
STATUS
approved