login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362003
Squarefree composite numbers m such that k - m^2 < m, where k is the smallest number greater than m^2 such that rad(k) | m.
0
42, 66, 78, 362, 1086, 1122, 1254, 1794, 1810, 1846, 1974, 2534, 2730, 3318, 3982, 4890, 5538, 5590, 6006, 6214, 9230, 12922, 12990, 13515, 15510, 16205, 17430, 18642, 20306, 22170, 23170, 25098, 26962, 27030, 29274, 31070, 32142, 32410
OFFSET
1,1
COMMENTS
Most small squarefree m have k - m^2 > m. For prime m = p, k = p^3, hence (p^3 - p^2) > p.
FORMULA
This sequence is { m : A362045(n) - m^2 < m and m in A120944 }.
EXAMPLE
a(1) = 42 since 42 is the smallest squarefree number such that the smallest k > m^2 such that rad(k) | m also has difference k - m^2 < m.
Table showing a(n) = A120944(i) = m, A362045(i) = k, and the difference k-m^2.
i m k (k-m^2)
-----------------------------
14 42 1792 28
22 66 4374 18
27 78 6144 60
147 362 131072 28
478 1086 1179648 252
495 1122 1259712 828
558 1254 1572864 348
813 1794 3219264 828
822 1810 3276800 700
840 1846 3407872 156
900 1974 3898368 1692
MATHEMATICA
s = Select[Range[6, 400], And[CompositeQ[#], SquareFreeQ[#]] &]; Reap[Do[(m = #^2 + 1; While[! Divisible[#, Times @@ FactorInteger[m][[All, 1]]], m++]; If[m - #^2 < #, Sow[#]]) &[s[[i]]], {i, Length[s]}] ][[-1, -1]]
PROG
(PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947
isok(m) = if (!isprime(m) && issquarefree(m), for (k=1+m^2, m+m^2, if (!(m % rad(k)), return(1)))); \\ Michel Marcus, Apr 21 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Apr 05 2023
STATUS
approved