login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squarefree composite numbers m such that k - m^2 < m, where k is the smallest number greater than m^2 such that rad(k) | m.
0

%I #30 Apr 23 2023 22:43:52

%S 42,66,78,362,1086,1122,1254,1794,1810,1846,1974,2534,2730,3318,3982,

%T 4890,5538,5590,6006,6214,9230,12922,12990,13515,15510,16205,17430,

%U 18642,20306,22170,23170,25098,26962,27030,29274,31070,32142,32410

%N Squarefree composite numbers m such that k - m^2 < m, where k is the smallest number greater than m^2 such that rad(k) | m.

%C Most small squarefree m have k - m^2 > m. For prime m = p, k = p^3, hence (p^3 - p^2) > p.

%F This sequence is { m : A362045(n) - m^2 < m and m in A120944 }.

%e a(1) = 42 since 42 is the smallest squarefree number such that the smallest k > m^2 such that rad(k) | m also has difference k - m^2 < m.

%e Table showing a(n) = A120944(i) = m, A362045(i) = k, and the difference k-m^2.

%e i m k (k-m^2)

%e -----------------------------

%e 14 42 1792 28

%e 22 66 4374 18

%e 27 78 6144 60

%e 147 362 131072 28

%e 478 1086 1179648 252

%e 495 1122 1259712 828

%e 558 1254 1572864 348

%e 813 1794 3219264 828

%e 822 1810 3276800 700

%e 840 1846 3407872 156

%e 900 1974 3898368 1692

%t s = Select[Range[6, 400], And[CompositeQ[#], SquareFreeQ[#]] &]; Reap[Do[(m = #^2 + 1; While[! Divisible[#, Times @@ FactorInteger[m][[All, 1]]], m++]; If[m - #^2 < #, Sow[#]]) &[s[[i]]], {i, Length[s]}] ][[-1, -1]]

%o (PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947

%o isok(m) = if (!isprime(m) && issquarefree(m), for (k=1+m^2, m+m^2, if (!(m % rad(k)), return(1)))); \\ _Michel Marcus_, Apr 21 2023

%Y Cf. A007947, A120944, A362045.

%K nonn

%O 1,1

%A _Michael De Vlieger_, Apr 05 2023