login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362001
Numbers k such that the digits of k^2 are a subsequence of the digits of 2^k.
3
2, 4, 26, 52, 58, 64, 73, 76, 86, 87, 89, 95, 96, 98, 100, 101, 104, 106, 110, 111, 112, 113, 121, 122, 126, 129, 133, 134, 135, 136, 138, 139, 140, 141, 144, 146, 148, 152, 156, 157, 161, 162, 163, 164, 165, 167, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 182, 183, 184, 186, 187, 189, 190
OFFSET
1,1
COMMENTS
Does the sequence contain all numbers > 327?
Conjecture is true up to 10^6. - Michael S. Branicky, Apr 03 2023
LINKS
EXAMPLE
a(3) = 26 is a term because the digits of 26^2 = 676 form a subsequence of those of 2^26 = 67108864.
MAPLE
filter:= proc(n) local L, nL, M, nM, i, j, k;
L:= convert(n^2, base, 10); nL:= nops(L);
M:= convert(2^n, base, 10); nM:= nops(M);
j:= 1:
for i from 1 to nL do
if not member(L[i], M[j..nM], 'k') then return false fi;
j:= j+k;
od;
true
end proc:
select(filter, [$0..200]);
PROG
(Python)
from itertools import count, islice, product
def ok(n):
s, p = n**2, 2**n
while s and p:
if p%10 == s%10:
s //= 10
p //= 10
return s == 0 and n > 0
print([k for k in range(200) if ok(k)]) # Michael S. Branicky, Apr 03 2023
(Python)
from itertools import count, islice
def A362001_gen(startvalue=1): # generator of terms >= startvalue
for k in count(max(startvalue, 1)):
c = iter(str(1<<k))
if all(map(lambda b:any(map(lambda a:a==b, c)), str(k**2))):
yield k
A362001_list = list(islice(A362001_gen(), 20)) # Chai Wah Wu, Apr 03 2023
CROSSREFS
Cf. A046829.
Sequence in context: A186431 A129894 A028386 * A259374 A155120 A356442
KEYWORD
nonn,base
AUTHOR
Robert Israel, Apr 02 2023
STATUS
approved