login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186431
Row sums of A186430.
2
1, 2, 4, 26, 18, 482, 266, 6050, 3114, 21122, 10730, 22178, 11226, 4455362, 2256338, 343874, 173610, 13643522, 6869842, 690621122, 347772738, 16250361602, 8187307306, 17146915106, 8584448890, 720152334722, 365024665978, 59381983394, 29700003082
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A053657(n)/(A053657(k)*A053657(n-k)), with the convention that A053657(0) = 1.
MAPLE
# A186431, uses program for A053657 written by Peter Luschny:
A053657 := proc(n) local P, p, q, s, r;
P := select(isprime, [$2..n]); r:=1;
for p in P do s := 0; q := p-1;
do if q > (n-1) then break fi;
s := s + iquo(n-1, q); q := q*p; od;
r := r * p^s; od; r end:
# Row sums:
a:= n-> add(A053657(n)/(A053657(k)*A053657(n-k)), k = 0..n):
seq (a(n), n = 0..22);
MATHEMATICA
b[n_] := b[n] = Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[ Range[n]]}];
T[n_, k_] := b[n]/(b[k] b[n-k]);
a[n_] := Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 26 2019 *)
CROSSREFS
Sequence in context: A162118 A128774 A218258 * A129894 A028386 A362001
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Feb 21 2011
STATUS
approved