login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of A186430.
2

%I #24 Jun 26 2019 03:33:56

%S 1,2,4,26,18,482,266,6050,3114,21122,10730,22178,11226,4455362,

%T 2256338,343874,173610,13643522,6869842,690621122,347772738,

%U 16250361602,8187307306,17146915106,8584448890,720152334722,365024665978,59381983394,29700003082

%N Row sums of A186430.

%F a(n) = Sum_{k=0..n} A053657(n)/(A053657(k)*A053657(n-k)), with the convention that A053657(0) = 1.

%p # A186431, uses program for A053657 written by Peter Luschny:

%p A053657 := proc(n) local P, p, q, s, r;

%p P := select(isprime, [$2..n]); r:=1;

%p for p in P do s := 0; q := p-1;

%p do if q > (n-1) then break fi;

%p s := s + iquo(n-1, q); q := q*p; od;

%p r := r * p^s; od; r end:

%p # Row sums:

%p a:= n-> add(A053657(n)/(A053657(k)*A053657(n-k)), k = 0..n):

%p seq (a(n), n = 0..22);

%t b[n_] := b[n] = Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[ Range[n]]}];

%t T[n_, k_] := b[n]/(b[k] b[n-k]);

%t a[n_] := Sum[T[n, k], {k, 0, n}];

%t Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Jun 26 2019 *)

%Y Cf. A053657, A186430.

%K nonn,easy

%O 0,2

%A _Peter Bala_, Feb 21 2011