login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186432
Triangle associated with the set S of squares {0,1,4,9,16,...}.
4
1, 1, 1, 1, 12, 1, 1, 30, 30, 1, 1, 56, 140, 56, 1, 1, 90, 420, 420, 90, 1, 1, 132, 990, 1848, 990, 132, 1, 1, 182, 2002, 6006, 6006, 2002, 182, 1, 1, 240, 3640, 16016, 25740, 16016, 3640, 240, 1, 1, 306, 6120, 37128, 87516, 87516, 37128, 6120, 306, 1, 1, 380, 9690, 77520, 251940, 369512, 251940, 77520, 9690, 380, 1
OFFSET
0,5
COMMENTS
Given a subset S of the integers Z, Bhargava [1] has shown how to associate with S a generalized factorial function, denoted n!_S, sharing many properties of the classical factorial function n! (which corresponds to the choice S = Z). In particular, he shows that the generalized binomial coefficients n!_S/(k!_S*(n-k)!_S) are always integral for any choice of S. Here we take S = {0,1,4,9,16,...}, the set of squares.
The associated generalized factorial function n!_S is given by the formula
n!_S = Product_{k=0..n} (n^2 - k^2), with the convention 0!_S = 1. This should be compared with n! = Product_{k=0..n} (n - k).
For n >= 1, n!_S = (2*n)!/2 = A002674(n).
Compare this triangle with A086645 and also A186430 - the generalized binomial coefficients for the set S of prime numbers {2,3,5,7,11,...}.
LINKS
M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly, 107 (2000), 783-799.
FORMULA
TABLE ENTRIES
T(n,k) = n!_S/(k!_S*(n-k)!_S),
which simplifies to
T(n,k) = 2*binomial(2*n,2*k) for 1 <= k < n,
with boundary conditions T(n,0) = 1 and T(n,n) = 1 for n >= 0.
RELATIONS WITH OTHER SEQUENCES
Denote this triangle by T. The first column of the inverse T^-1 (see A186433) begins [1, -1, 11, -301, 15371, ...] and, apart from the initial 1, is a signed version of the Glaisher's H' numbers A002114.
The first column of (1/2)*T^2 begins [1/2, 1, 7, 31, 127, ...] and, apart from the initial term, equals A000225(2*n-1), counting the preferential arrangements on (2*n - 1) labeled elements having less than or equal to two ranks.
The first column of (1/3)*T^3 begins [1/3, 1, 13, 181, 1933, ...] and, apart from the initial term, is A101052(2*n-1), which gives the number of preferential arrangements on (2*n-1) labeled elements having less than or equal to three ranks.
EXAMPLE
Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1....12.....1
.3..|..1....30....30.....1
.4..|..1....56...140....56.....1
.5..|..1....90...420...420....90.....1
.6..|..1...132...990..1848...990...132.....1
.7..|..1...182..2002..6006..6006..2002...182.....1
...
MATHEMATICA
Table[2 Binomial[2 n, 2 k] - Boole[Or[k == 0, k == n]], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, May 23 2017 *)
CROSSREFS
Cf. A002114, A086645, A186430, A186433 (inverse).
Sequence in context: A051457 A174450 A166343 * A176489 A174039 A174148
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Feb 22 2011
STATUS
approved