OFFSET
1,3
COMMENTS
0 is only 0 regardless of the base,
1 is only 1 regardless of the base,
2 on the other hand is also 10 in base 2, denoted as 10_2,
3 is 3 in all bases greater than 3, but is 11_2 and 10_3.
LINKS
EXAMPLE
52 is in the sequence because 52_10 = 202_5 = 1221_3.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 5]; If[ palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=3; b2=5; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 15 2015 *)
PROG
(Python)
def nextpal(n, b): # returns the palindromic successor of n in base b
....m, pl = n+1, 0
....while m > 0:
........m, pl = m//b, pl+1
....if n+1 == b**pl:
........pl = pl+1
....n = (n//(b**(pl//2))+1)//(b**(pl%2))
....m = n
....while n > 0:
........m, n = m*b+n%b, n//b
....return m
n, a3, a5 = 0, 0, 0
while n <= 20000:
....if a3 < a5:
........a3 = nextpal(a3, 3)
....elif a5 < a3:
........a5 = nextpal(a5, 5)
....else: # a3 == a5
........print(n, a3)
........a3, a5, n = nextpal(a3, 3), nextpal(a5, 5), n+1
# A.H.M. Smeets, Jun 03 2019
CROSSREFS
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380-A259384, A099145, A259385-A259390, A099146, A007632, A007633, A029961-A029964, A029804, A029965-A029970, A029731, A097855, A250408-A250411, A099165, A250412.
KEYWORD
nonn,base
AUTHOR
Eric A. Schmidt and Robert G. Wilson v, Jul 14 2015
STATUS
approved