login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259371
Primes of the form 1 + sigma(n)^3 + sigma(n)^6.
3
3, 757, 262657, 64008001, 46656216001, 30841155073, 729027001, 46656216001, 30841155073, 225200075257, 885843322057, 46656216001, 41407378175593, 885843322057, 25002115044733, 1126163480473, 85766130261001, 191102989824001, 85766130261001, 41407378175593
OFFSET
1,1
COMMENTS
These primes are neither sorted nor uniqued. They are listed in the order found in A259369.
FORMULA
a(n) = A259369(A259370(n)).
MAPLE
with(numtheory): b:=n->1+sigma(n)^3+sigma(n)^6: A259371:=n->`if`( isprime(b(n)), b(n), NULL): seq(A259371(n), n=1..200); # Wesley Ivan Hurt, Jun 29 2015
MATHEMATICA
Select[Table[1 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^6, {n, 10000}], PrimeQ]
Select[Table[Cyclotomic[9, DivisorSigma[1, n]], {n, 10000}], PrimeQ]
PROG
(Magma) [a: n in [1..150] | IsPrime(a) where a is 1 + SumOfDivisors(n)^3 + SumOfDivisors(n)^6]; // Vincenzo Librandi, Jun 26 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert Price, Jun 25 2015
STATUS
approved