login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249156
Palindromic in bases 5 and 7.
20
0, 1, 2, 3, 4, 6, 24, 57, 78, 114, 342, 624, 856, 1432, 10308, 12654, 27616, 100056, 537856, 593836, 769621, 1434168, 1473368, 1636104, 1823544, 1862744, 17968646, 18108296, 22412057, 34713713, 34853363, 39280254, 159690408, 663706192
OFFSET
1,3
COMMENTS
Intersection of A029952 and A029954.
LINKS
G. Resta, Table of n, a(n) for n = 1..72 (first 60 terms from Ray Chandler)
Attila Bérczes and Volker Ziegler, On Simultaneous Palindromes, arXiv:1403.0787 [math.NT], 2014.
EXAMPLE
114 is a term since 114 = 424 base 5 and 114 = 222 base 7.
MATHEMATICA
palQ[n_Integer, base_Integer]:=Block[{idn=IntegerDigits[n, base]}, idn==Reverse[idn]]; Select[Range[10^6]-1, palQ[#, 5]&&palQ[#, 7]&]
PROG
(Python)
from gmpy2 import digits
def palQ(n, b): # check if n is a palindrome in base b
s = digits(n, b)
return s == s[::-1]
def palQgen(l, b): # unordered generator of palindromes in base b of length <= 2*l
if l > 0:
yield 0
for x in range(1, b**l):
s = digits(x, b)
yield int(s+s[-2::-1], b)
yield int(s+s[::-1], b)
A249156_list = sorted([n for n in palQgen(8, 5) if palQ(n, 7)]) # Chai Wah Wu, Nov 25 2014
(PARI) isok(n) = my(df = digits(n, 5), ds = digits(n, 7)); (Vecrev(df)==df) && (Vecrev(ds)==ds); \\ Michel Marcus, Oct 31 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ray Chandler, Oct 27 2014
STATUS
approved