login
A029965
Palindromic in bases 9 and 10.
57
0, 1, 2, 3, 4, 5, 6, 7, 8, 191, 282, 373, 464, 555, 646, 656, 6886, 25752, 27472, 42324, 50605, 626626, 1540451, 1713171, 1721271, 1828281, 1877781, 1885881, 2401042, 2434342, 2442442, 2450542, 3106013, 3114113, 3122213, 3163613
OFFSET
1,3
LINKS
Robert G. Wilson v and Ray Chandler, Table of n, a(n) for n = 1..66 (terms < 10^18, first 52 terms from Robert G. Wilson v)
MATHEMATICA
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 9], AppendTo[l, a]], {n, 10000}]; l (* Robert G. Wilson v, Sep 30 2004 *)
pQ[n_, k_]:=Reverse[x=IntegerDigits[n, k]]==x; t={}; Do[If[pQ[n, 10] && pQ[n, 9], AppendTo[t, n]], {n, 3.2*10^6}]; t (* Jayanta Basu, May 25 2013 *)
Select[Range[0, 10^5],
PalindromeQ[#] && # == IntegerReverse[#, 9] &] (* Robert Price, Nov 09 2019 *)
KEYWORD
nonn,base
STATUS
approved