OFFSET
1,3
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..70 (first 63 terms from Ray Chandler)
P. De Geest, Palindromic numbers beyond base 10
MATHEMATICA
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 14], AppendTo[l, a]], {n, 300000}]; l (* Robert G. Wilson v, Sep 03 2004 *)
b1=10; b2=14; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 1000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)
palQ[n_]:=Module[{idn14=IntegerDigits[n, 14]}, n==IntegerReverse[n]&&idn14==Reverse[idn14]]; Select[Range[10^7], palQ] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Apr 23 2016 *)
Select[Range[0, 10^5],
PalindromeQ[#] && # == IntegerReverse[#, 14] &] (* Robert Price, Nov 09 2019 *)
PROG
(Magma) [n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 14) eq Reverse(Intseq(n, 14))]; // Vincenzo Librandi, Nov 23 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved