login
A029969
Numbers that are palindromic in bases 10 and 14.
40
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 323, 464, 717, 858, 999, 1111, 39593, 59095, 420024, 546645, 9046409, 9578759, 9813189, 535505535, 564303465, 595121595, 5736116375, 6758008576, 10476867401, 11652825611, 14203330241
OFFSET
1,3
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..70 (first 63 terms from Ray Chandler)
MATHEMATICA
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 14], AppendTo[l, a]], {n, 300000}]; l (* Robert G. Wilson v, Sep 03 2004 *)
b1=10; b2=14; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 1000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)
palQ[n_]:=Module[{idn14=IntegerDigits[n, 14]}, n==IntegerReverse[n]&&idn14==Reverse[idn14]]; Select[Range[10^7], palQ] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Apr 23 2016 *)
Select[Range[0, 10^5],
PalindromeQ[#] && # == IntegerReverse[#, 14] &] (* Robert Price, Nov 09 2019 *)
PROG
(Magma) [n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 14) eq Reverse(Intseq(n, 14))]; // Vincenzo Librandi, Nov 23 2014
KEYWORD
nonn,base
STATUS
approved