login
A250408
Palindromic in bases 10 and 20.
21
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 252, 6556, 6776, 7117, 10101, 12621, 20202, 22722, 30303, 1784871, 1786871, 1788871, 1913191, 1915191, 1917191, 1919191, 1444884441, 334495594433, 334843348433, 355110011553, 355746647553, 10614366341601, 14102600620141, 28095922959082, 38072044027083
OFFSET
1,3
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..85
MATHEMATICA
palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; genPal[n_] := Block[{id = IntegerDigits@ n, insert = {{}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; k = 1; lst = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; While[k < 1000001, s = Select[ genPal[k], palQ[#, 20] &]; If[s != {}, AppendTo[lst, s]; Print@ s; lst = Sort@ Flatten@ lst]; k++]; lst
b1=10; b2=20; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)
PROG
(Magma) [n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 20) eq Reverse(Intseq(n, 20))]; // Vincenzo Librandi, Nov 23 2014
(Python)
from gmpy2 import digits
def palQ(n, b): # check if n is a palindrome in base b
s = digits(n, b)
return s == s[::-1]
def palQgen10(l): # unordered generator of palindromes of length <= 2*l
if l > 0:
yield 0
for x in range(1, 10**l):
s = str(x)
yield int(s+s[-2::-1])
yield int(s+s[::-1])
A250408_list = sorted([n for n in palQgen10(6) if palQ(n, 20)])
# Chai Wah Wu, Nov 25 2014
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Nov 22 2014
STATUS
approved