login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A099165
Palindromic in bases 10 and 32.
35
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 66, 99, 363, 858, 1441, 2882, 5445, 6886, 9449, 15951, 19891, 21012, 29692, 32223, 54945, 369963, 477774, 564465, 585585, 609906, 672276, 717717, 780087, 804408, 912219, 1251521, 2639362, 3825283
OFFSET
1,3
LINKS
Ray Chandler and Robert G. Wilson v, Table of n, a(n) for n = 1..115, terms a(88)-a(111) from Ray Chandler.
MATHEMATICA
NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]] ]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[idfhn], Drop[ Reverse[ IntegerDigits[idfhn]], Mod[l, 2]] ]]] ]]]; palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 32], AppendTo[l, a]], {n, 10000}]; l
Select[Range[0, 10^5],
PalindromeQ[#] && # == IntegerReverse[#, 32] &] (* Robert Price, Nov 09 2019 *)
PROG
(Python)
from gmpy2 import digits
def palQ(n, b): # check if n is a palindrome in base b
s = digits(n, b)
return s == s[::-1]
def palQgen10(l): # unordered generator of palindromes of length <= 2*l
if l > 0:
yield 0
for x in range(1, 10**l):
s = str(x)
yield int(s+s[-2::-1])
yield int(s+s[::-1])
A099165_list = sorted([n for n in palQgen10(6) if palQ(n, 32)])
# Chai Wah Wu, Nov 25 2014
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Sep 30 2004
STATUS
approved