login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117056
Palindromes for which both the sum of the digits and the product of the digits are also palindromes.
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 101, 111, 121, 131, 141, 151, 161, 171, 191, 202, 212, 222, 303, 313, 404, 1001, 1111, 1221, 1331, 2002, 2112, 3003, 3113, 4004, 10001, 10101, 10201, 10301, 10401, 10501, 10601, 10701, 10901, 11011, 11111, 11211
OFFSET
1,3
EXAMPLE
11711 is in the sequence because (1) it is a palindrome, (2)the sum of its digits 1+1+7+1+1=11 is a palindrome and (3)the product of its digits 1*1*7*1*1=7 is also a palindrome.
MATHEMATICA
id[n_]:=IntegerDigits[n]; palQ[n_]:=Reverse[x=id[n]]==x; t={}; Do[If[palQ[n] && palQ[Plus@@id[n]] && palQ[Times@@id[n]], AppendTo[t, n]], {n, 0, 11220}]; t (* Jayanta Basu, May 15 2013 *)
Select[Range[0, 12000], AllTrue[{#, Total[IntegerDigits[#]], Times@@IntegerDigits[#]}, PalindromeQ]&] (* Harvey P. Dale, Jul 05 2022 *)
PROG
(PARI) ispal(n)=n=digits(n); for(i=1, #n\2, if(n[i]!=n[#n+1-i], return(0))); 1
is(n)=my(d=vecsort(digits(n))); ispal(sum(i=1, #d, d[i]))&&ispal(prod(i=1, #d, d[i]))&&ispal(n) \\ Charles R Greathouse IV, May 15 2013
CROSSREFS
Cf. A002113.
Sequence in context: A099165 A239480 A117055 * A082207 A083115 A266280
KEYWORD
base,nonn
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006
STATUS
approved