login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117055
Palindromes for which the product of the digits is also a palindrome.
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 303, 313, 404, 505, 606, 676, 707, 777, 808, 909, 1001, 1111, 1221, 1331, 2002, 2112, 3003, 3113, 4004, 5005, 6006, 7007, 8008, 9009, 10001, 10101
OFFSET
1,3
EXAMPLE
676 is in the sequence because it is a palindrome and the product of its digits 6*7*6=252 is also a palindrome.
MATHEMATICA
id[n_]:=IntegerDigits[n]; palQ[n_]:=Reverse[x=id[n]]==x; t={}; Do[If[palQ[n] && palQ[Times@@id[n]], AppendTo[t, n]], {n, 0, 10110}]; t (* Jayanta Basu, May 15 2013 *)
PROG
(PARI) isok(n) = my(d = digits(n), dp = digits(vecprod(d))); (Vecrev(d) == d) && (Vecrev(dp) == dp); \\ Michel Marcus, Nov 11 2019
(Magma) f:=func<n| Intseq(n) eq Reverse(Intseq(n))>; [k:k in [0..10000]| f(k) and f(&*Intseq(k))]; // Marius A. Burtea, Nov 11 2019
CROSSREFS
Sequence in context: A201061 A099165 A239480 * A117056 A082207 A083115
KEYWORD
nonn,base
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006
STATUS
approved