login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117058
Palindromes for which the product of the digits is prime.
2
2, 3, 5, 7, 121, 131, 151, 171, 11211, 11311, 11511, 11711, 1112111, 1113111, 1115111, 1117111, 111121111, 111131111, 111151111, 111171111, 11111211111, 11111311111, 11111511111, 11111711111, 1111112111111, 1111113111111
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,110,-110,0,0,-1000,1000).
FORMULA
From Chai Wah Wu, Nov 13 2018: (Start)
a(n) = a(n-1) + 110*a(n-4) - 110*a(n-5) - 1000*a(n-8) + 1000*a(n-9) for n > 9.
G.f.: x*(-500*x^8 + 200*x^7 + 200*x^6 + 100*x^5 + 106*x^4 - 2*x^3 - 2*x^2 - x - 2)/((x - 1)*(10*x^2 - 1)*(10*x^2 + 1)*(10*x^4 - 1)). (End)
EXAMPLE
11211 is in the sequence because it is a palindrome and the product of its digits 1*1*2*1*1=2 is a prime.
MATHEMATICA
Sort[Flatten[Table[NestList[FromDigits[Flatten[{1, IntegerDigits[#], 1}]] &, n, 6], {n, Prime[Range[4]]}]]] (* Jayanta Basu, Jul 13 2013 *)
LinearRecurrence[{1, 0, 0, 110, -110, 0, 0, -1000, 1000}, {2, 3, 5, 7, 121, 131, 151, 171, 11211}, 40] (* Vincenzo Librandi, Nov 14 2018 *)
PROG
(PARI) isok(n) = my(d=digits(n)); (Vecrev(d) == d) && isprime(vecprod(d)); \\ Michel Marcus, Nov 14 2018
(Magma) I:=[2, 3, 5, 7, 121, 131, 151, 171, 11211]; [n le 9 select I[n] else Self(n-1)+110*Self(n-4)-110*Self(n-5)-1000*Self(n-8)+1000*Self(n-9): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
CROSSREFS
Cf. A002113.
Sequence in context: A119835 A076609 A117059 * A067173 A357262 A340113
KEYWORD
base,easy,nonn
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006
STATUS
approved