Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:24
%S 2,3,5,7,121,131,151,171,11211,11311,11511,11711,1112111,1113111,
%T 1115111,1117111,111121111,111131111,111151111,111171111,11111211111,
%U 11111311111,11111511111,11111711111,1111112111111,1111113111111
%N Palindromes for which the product of the digits is prime.
%H Vincenzo Librandi, <a href="/A117058/b117058.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,110,-110,0,0,-1000,1000).
%F From _Chai Wah Wu_, Nov 13 2018: (Start)
%F a(n) = a(n-1) + 110*a(n-4) - 110*a(n-5) - 1000*a(n-8) + 1000*a(n-9) for n > 9.
%F G.f.: x*(-500*x^8 + 200*x^7 + 200*x^6 + 100*x^5 + 106*x^4 - 2*x^3 - 2*x^2 - x - 2)/((x - 1)*(10*x^2 - 1)*(10*x^2 + 1)*(10*x^4 - 1)). (End)
%e 11211 is in the sequence because it is a palindrome and the product of its digits 1*1*2*1*1=2 is a prime.
%t Sort[Flatten[Table[NestList[FromDigits[Flatten[{1, IntegerDigits[#], 1}]] &, n, 6], {n, Prime[Range[4]]}]]] (* _Jayanta Basu_, Jul 13 2013 *)
%t LinearRecurrence[{1, 0, 0, 110, -110, 0, 0, -1000, 1000}, {2, 3, 5, 7, 121, 131, 151, 171, 11211}, 40] (* _Vincenzo Librandi_, Nov 14 2018 *)
%o (PARI) isok(n) = my(d=digits(n)); (Vecrev(d) == d) && isprime(vecprod(d)); \\ _Michel Marcus_, Nov 14 2018
%o (Magma) I:=[2,3,5,7,121,131,151,171,11211]; [n le 9 select I[n] else Self(n-1)+110*Self(n-4)-110*Self(n-5)-1000*Self(n-8)+1000*Self(n-9): n in [1..30]]; // _Vincenzo Librandi_, Nov 14 2018
%Y Cf. A002113.
%K base,easy,nonn
%O 1,1
%A Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006