login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099168
a(n) = 3^n * 5^binomial(n,2).
0
1, 3, 45, 3375, 1265625, 2373046875, 22247314453125, 1042842864990234375, 244416296482086181640625, 286425347439944744110107421875, 1678273520155926235020160675048828125
OFFSET
0,2
LINKS
Theresia Eisenkölbl, 2-Enumerations of halved alternating sign matrices, Séminaire Lotharingien de Combinatoire, B46c (2001), 11 pp.
FORMULA
0 = a(n)*a(n+2) - 5*a(n+1)^2 for all n in Z. - Michael Somos, Dec 03 2016
EXAMPLE
G.f. = 1 + 3*x + 45*x^2 + 3375*x^3 + 1265625*x^4 + 2373046875*x^5 + ...
MATHEMATICA
Table[3^n 5^Binomial[n, 2], {n, 0, 10}] (* Harvey P. Dale, Dec 17 2020 *)
PROG
(PARI) a(n) = 3^n * 5^binomial(n, 2); \\ Michel Marcus, Dec 02 2016
CROSSREFS
Cf. A002416.
Sequence in context: A027637 A228903 A198952 * A227379 A004105 A060336
KEYWORD
nonn
AUTHOR
Ralf Stephan, Oct 09 2004
STATUS
approved