login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198952
G.f.: Sum_{n>=0} n! * 3^(n*(n-1)/2) * x^n / Product_{k=1..n} (1 + k*3^k*x).
0
1, 1, 3, 45, 3267, 991845, 1155605211, 4910640919821, 73614877173054099, 3802910817051064124469, 665332303024345700007225099, 388955052253927480089824057425437, 751710022839628223241451188902204177091
OFFSET
0,3
COMMENTS
Compare the g.f. to the identities:
(1) 1/(1-x) = Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + k*x).
(2) 1+x = Sum_{n>=0} 3^(n*(n-1)/2) * x^n / Product_{k=1..n} (1 + 3^k*x).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 45*x^3 + 3267*x^4 + 991845*x^5 + 1155605211*x^6 +...
such that
A(x) = 1 + x/(1+3*x) + 2!*3^1*x^2/((1+1*3*x)*(1+2*9*x)) + 3!*3^3*x^3/((1+1*3*x)*(1+2*9*x)*(1+3*27*x)) + 4!*3^6*x^4/((1+1*3*x)*(1+2*9*x)*(1+3*27*x)*(1+4*81*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m!*3^(m*(m-1)/2)*x^m/prod(k=1, m, 1+k*3^k*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A182507.
Sequence in context: A356519 A027637 A228903 * A099168 A227379 A004105
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2012
STATUS
approved