OFFSET
0,3
COMMENTS
Compare the g.f. to the identities:
(1) 1/(1-x) = Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + k*x).
(2) 1+x = Sum_{n>=0} 3^(n*(n-1)/2) * x^n / Product_{k=1..n} (1 + 3^k*x).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 45*x^3 + 3267*x^4 + 991845*x^5 + 1155605211*x^6 +...
such that
A(x) = 1 + x/(1+3*x) + 2!*3^1*x^2/((1+1*3*x)*(1+2*9*x)) + 3!*3^3*x^3/((1+1*3*x)*(1+2*9*x)*(1+3*27*x)) + 4!*3^6*x^4/((1+1*3*x)*(1+2*9*x)*(1+3*27*x)*(1+4*81*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m!*3^(m*(m-1)/2)*x^m/prod(k=1, m, 1+k*3^k*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2012
STATUS
approved