login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198950
G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k / A(x)^k] * x^n/n ).
3
1, 1, 2, 5, 10, 22, 58, 150, 392, 1097, 3139, 9069, 26903, 81299, 248305, 768521, 2407340, 7607947, 24248690, 77906841, 251995121, 820096599, 2684160567, 8830103123, 29183369411, 96865043941, 322780531149, 1079491353973, 3622338207474, 12193038599714, 41161594789286
OFFSET
0,3
COMMENTS
Compare to g.f. G(x) = (1+x^2)/(1-x-x^3) that satisfies:
G(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2 * x^k / G(x)^k] * x^n/n ).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 22*x^5 + 58*x^6 +...
where
log(A(x)) = (1 + x/A(x))*x + (1 + 2^3*x/A(x) + x^2/A(x)^2)*x^2/2 +
(1 + 3^3*x/A(x) + 3^3*x^2/A(x)^2 + x^3/A(x)^3)*x^3/3 +
(1 + 4^3*x/A(x) + 6^3*x^2/A(x)^2 + 4^3*x^3/A(x)^3 + x^4/A(x)^4)*x^4/4 +
(1 + 5^3*x/A(x) + 10^3*x^2/A(x)^2 + 10^3*x^3/A(x)^3 + 5^3*x^4/A(x)^4 + x^5/A(x)^5)*x^5/5 +...
more explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 19*x^4/4 + 46*x^5/5 + 162*x^6/6 + 477*x^7/7 + 1371*x^8/8 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*x^j/(A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
CROSSREFS
Sequence in context: A166300 A038149 A046745 * A379378 A015902 A301427
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 31 2011
STATUS
approved