This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198949 y-values in the solution to 11*x^2-10 = y^2. 5
 1, 23, 43, 461, 859, 9197, 17137, 183479, 341881, 3660383, 6820483, 73024181, 136067779, 1456823237, 2714535097, 29063440559, 54154634161, 579811987943, 1080378148123, 11567176318301, 21553408328299, 230763714378077, 429987788417857, 4603707111243239 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS When are both n+1 and 11*n+1 perfect squares? This problem gives the equation 11*x^2-10 = y^2. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..250 Index entries for linear recurrences with constant coefficients, signature (0, 20, 0, -1). FORMULA a(n+4) = 20*a(n+2)-a(n) with a(1)=1, a(2)=23, a(3)=43, a(4)=461. G.f.: x*(1+x)*(1+22*x+x^2)/(1-20*x^2+x^4). - Bruno Berselli, Nov 04 2011 a(n) = ((-(-1)^n-t)*(10-3*t)^floor(n/2)+(-(-1)^n+t)*(10+3*t)^floor(n/2))/2 where t=sqrt(11). - Bruno Berselli, Nov 14 2011 MATHEMATICA LinearRecurrence[{0, 20, 0, -1}, {1, 23, 43, 461}, 24]  (* Bruno Berselli, Nov 11 2011 *) PROG (Maxima) makelist(expand(((-(-1)^n-sqrt(11))*(10-3*sqrt(11))^floor(n/2)+(-(-1)^n+sqrt(11))*(10+3*sqrt(11))^floor(n/2))/2), n, 1, 24);  /* Bruno Berselli, Nov 14 2011 */ CROSSREFS Cf. A198947. Sequence in context: A180534 A138975 A168439 * A214891 A003859 A058545 Adjacent sequences:  A198946 A198947 A198948 * A198950 A198951 A198952 KEYWORD nonn,easy AUTHOR Sture Sjöstedt, Oct 31 2011 EXTENSIONS More terms from Bruno Berselli, Nov 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 23:44 EST 2019. Contains 329945 sequences. (Running on oeis4.)