login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198949
y-values in the solution to 11*x^2-10 = y^2.
5
1, 23, 43, 461, 859, 9197, 17137, 183479, 341881, 3660383, 6820483, 73024181, 136067779, 1456823237, 2714535097, 29063440559, 54154634161, 579811987943, 1080378148123, 11567176318301, 21553408328299, 230763714378077, 429987788417857, 4603707111243239
OFFSET
1,2
COMMENTS
When are both n+1 and 11*n+1 perfect squares? This problem gives the equation 11*x^2-10 = y^2.
FORMULA
a(n+4) = 20*a(n+2)-a(n) with a(1)=1, a(2)=23, a(3)=43, a(4)=461.
G.f.: x*(1+x)*(1+22*x+x^2)/(1-20*x^2+x^4). - Bruno Berselli, Nov 04 2011
a(n) = ((-(-1)^n-t)*(10-3*t)^floor(n/2)+(-(-1)^n+t)*(10+3*t)^floor(n/2))/2 where t=sqrt(11). - Bruno Berselli, Nov 14 2011
MATHEMATICA
LinearRecurrence[{0, 20, 0, -1}, {1, 23, 43, 461}, 24] (* Bruno Berselli, Nov 11 2011 *)
PROG
(Maxima) makelist(expand(((-(-1)^n-sqrt(11))*(10-3*sqrt(11))^floor(n/2)+(-(-1)^n+sqrt(11))*(10+3*sqrt(11))^floor(n/2))/2), n, 1, 24); /* Bruno Berselli, Nov 14 2011 */
CROSSREFS
Cf. A198947.
Sequence in context: A138975 A168439 A332399 * A334113 A214891 A003859
KEYWORD
nonn,easy
AUTHOR
Sture Sjöstedt, Oct 31 2011
EXTENSIONS
More terms from Bruno Berselli, Nov 04 2011
STATUS
approved