login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214891
Numbers that are not the sum of two squares and two fourth powers.
4
23, 44, 71, 79, 184, 368, 519, 599, 704, 1136, 1264, 2944, 4024, 5888, 8304, 9584, 11264, 18176, 20224, 47104, 64384, 94208, 132864, 153344, 180224, 290816, 323584, 753664, 1030144, 1507328, 2125824, 2453504, 2883584, 4653056, 5177344, 12058624, 16482304
OFFSET
1,1
COMMENTS
From XU Pingya, Feb 07 2018: (Start)
When n is a term, 16n is also. This can be proved as follows:
(1) If w is odd, then 16n - w^4 == 7 (mod 8), and it follows from Legendre's three-square theorem that the equation x^2 + y^2 + z^4 + w^4 = 16n has no solution (it is the same when x, y or z are odd numbers).
(2) If x, y, z and w are even numbers (x = 2a, y = 2b, z = 2c, w = 2d) such that x^2 + y^2 + z^4 + w^4 = 16n, then a^2 + b^2 = 4(n - c^4 - d^4). So there are integers u and v satisfying u^2 + v^2 = n - c^4 - d^4. i.e. u^2 + v^2 + c^4 + d^4 = n, which is a contradiction.
(End)
Conjecture: The set {a(n): n > 0} coincides with {16^k*m: k = 0, 1, 2, ... and m = 23, 44, 71, 79, 184, 519, 599, 4024}. - Zhi-Wei Sun, Jan 27 2022
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..52 (terms <= 4*10^9)
Zhi-Wei Sun, On w^4+x^4+y^2+z^2 over a number field, Question 414791 at MathOverflow, Jan. 27, 2022.
PROG
(PARI)
N=10^6; x='x+O('x^N);
S(e)=sum(j=0, ceil(N^(1/e)), x^(j^e));
v=Vec( S(4)^2 * S(2)^2 );
for(n=1, #v, if(!v[n], print1(n-1, ", ")));
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 29 2012
EXTENSIONS
a(29)-a(37) from Donovan Johnson, Jul 29 2012
STATUS
approved