|
|
A022549
|
|
Sum of a square and a nonnegative cube.
|
|
16
|
|
|
0, 1, 2, 4, 5, 8, 9, 10, 12, 16, 17, 24, 25, 26, 27, 28, 31, 33, 36, 37, 43, 44, 49, 50, 52, 57, 63, 64, 65, 68, 72, 73, 76, 80, 81, 82, 89, 91, 100, 101, 108, 113, 121, 122, 125, 126, 127, 128, 129, 134, 141, 144, 145
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
It appears that there are no modular constraints on this sequence; i.e., every residue class of every integer has representatives here. - Franklin T. Adams-Watters, Dec 03 2009
A045634(a(n)) > 0. - Reinhard Zumkeller, Jul 17 2010
|
|
LINKS
|
R. Zumkeller, Table of n, a(n) for n = 1..10000 - Reinhard Zumkeller, Jul 17 2010
|
|
MATHEMATICA
|
q=30; imax=q^2; Select[Union[Flatten[Table[x^2+y^3, {y, 0, q^(2/3)}, {x, 0, q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
|
|
PROG
|
(PARI) is(n)=for(k=0, sqrtnint(n, 3), if(issquare(n-k^3), return(1))); 0 \\ Charles R Greathouse IV, Aug 24 2020
(PARI) list(lim)=my(v=List(), t); for(k=0, sqrtnint(lim\=1, 3), t=k^3; for(n=0, sqrtint(lim-t), listput(v, t+n^2))); Set(v) \\ Charles R Greathouse IV, Aug 24 2020
|
|
CROSSREFS
|
Complement of A022550; A002760 and A179509 are subsequences.
Cf. A055394, A045634, A055393, A123291, A169618, A123364, A111925.
Sequence in context: A166110 A087815 A248893 * A045704 A169612 A084581
Adjacent sequences: A022546 A022547 A022548 * A022550 A022551 A022552
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|