login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022547 Initial members of prime nonuplets (p, p+4, p+6, p+10, p+16, p+18, p+24, p+28, p+30). 31
13, 113143, 626927443, 2335215973, 3447123283, 4086982633, 4422726013, 6318867403, 7093284043, 8541306853, 10998082213, 14005112893, 18869466373, 21528117883, 21843411823, 28156779793, 30303283243 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms are congruent to 13 (modulo 30). - Matt C. Anderson, May 28 2015

LINKS

Matt C. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 1000 terms from Matt C. Anderson]

T. Forbes, Prime k-tuplets

MAPLE

composite_small := proc (n::integer)

description "determine if n has a prime factor less than 100";

if igcd(2305567963945518424753102147331756070, n) = 1 then return false else return true end if;

end proc:

# A prime constellation pattern of length 9

p := [0, 4, 6, 10, 16, 18, 24, 28, 30];

# using isprime(m*n+o+p)

o := [1273, 2263, 2683, 4003, 4633, 4993, 5893, 6883, 6943, 8623, 9613, 10243, 11563, 12823, 14863, 15133, 15553, 17863, 18433, 19753, 21163, 21793, 22483, 23053, 23113, 24103, 25783, 27733, 28723, 29983]:

with(ArrayTools):

os := Size(o, 2):

m := 30030:

loopstop := 10^11:

loopstart := 0:

print(13);

for n from loopstart to loopstop do

for a from 1 to os do

counter := 0; wc := 0; wd := 0;

while `and`(wd > -10, wd < 9) do

wd := wd+1;

if composite_small(m*n+o[a]+p[wd]) = false then wd := wd+1 else wd := -10 end if

end do;

if wd >= 9 then

while `and`(counter >= 0, wc < 9) do

wc := wc+1; if isprime(m*n+o[a]+p[wc]) then counter := counter+1 else counter := -1 end if;

end do;

end if;

if counter = 9 then print(m*n+o[a]) end if;

end do:

end do:

# Matt C. Anderson, Feb 01 2014

MATHEMATICA

Select[Prime[Range[200000]], Union[PrimeQ[# + {4, 6, 10, 16, 18, 24, 28, 30}]] == {True} &] (* Vincenzo Librandi, Sep 30 2015 *)

PROG

(Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e11, 4, 6, 10, 16, 18, 24, 28, 30); # Dana Jacobsen, Sep 30 2015

(MAGMA) [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [4, 6, 10, 16, 18, 24, 28, 30] | IsPrime(p+r)}]; // Vincenzo Librandi, Sep 30 2015

(PARI) forprime(p=2, 10^30, if (isprime(p+4) && isprime(p+6) && isprime(p+10) && isprime(p+16) && isprime(p+18) && isprime(p+24) && isprime(p+28) && isprime(p+30), print1(p", "))) \\ Altug Alkan, Sep 30 2015

CROSSREFS

Sequence in context: A203675 A189251 A188980 * A273217 A176119 A228522

Adjacent sequences:  A022544 A022545 A022546 * A022548 A022549 A022550

KEYWORD

nonn

AUTHOR

Warut Roonguthai

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 21:30 EDT 2021. Contains 344003 sequences. (Running on oeis4.)