|
|
A022545
|
|
Initial members of prime nonuplets (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26, p+30).
|
|
34
|
|
|
11, 182403491, 226449521, 910935911, 1042090781, 1459270271, 2843348351, 6394117181, 6765896981, 8247812381, 8750853101, 11076719651, 12850665671, 17140322651, 22784826131, 24816950771, 33081664151
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All terms congruent to 11 (modulo 210). - Matt C. Anderson, May 27 2015
|
|
LINKS
|
Matt C. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 401 terms from Matt C. Anderson]
Tony Forbes and Norman Luhn, Prime k-tuplets
Norman Luhn, The first 10^6 initial members of prime 9-tuplets | pattern: d= 0, 2, 6, 8, 12, 18, 20, 26, 30, zip archive.
|
|
MATHEMATICA
|
Select[Prime[Range[250000000]], Union[PrimeQ[ # +{2, 6, 8, 12, 18, 20, 26, 30}]]=={True} &] (* Vincenzo Librandi, May 27 2015 *)
|
|
PROG
|
(Magma) [p: p in PrimesUpTo(250000000) | forall{p+r: r in [2, 6, 8, 12, 18, 20, 26, 30] | IsPrime(p+r)}]; // Vincenzo Librandi, May 27 2015
(Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e11, 2, 6, 8, 12, 18, 20, 26, 30); # Dana Jacobsen, Sep 30 2015
(PARI) forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+12) && isprime(p+18) && isprime(p+20) && isprime(p+26) && isprime(p+30), print1(p", "))) \\ Altug Alkan, Sep 30 2015
|
|
CROSSREFS
|
Cf. A022546, A022547, A022548.
Sequence in context: A175889 A347849 A295173 * A346996 A086503 A275573
Adjacent sequences: A022542 A022543 A022544 * A022546 A022547 A022548
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Warut Roonguthai
|
|
EXTENSIONS
|
More terms from Matt C. Anderson
|
|
STATUS
|
approved
|
|
|
|