login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022545 Initial members of prime nonuplets (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26, p+30). 34
11, 182403491, 226449521, 910935911, 1042090781, 1459270271, 2843348351, 6394117181, 6765896981, 8247812381, 8750853101, 11076719651, 12850665671, 17140322651, 22784826131, 24816950771, 33081664151 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms congruent to 11 (modulo 210). - Matt C. Anderson, May 27 2015

LINKS

Matt C. Anderson and Dana Jacobsen, Table of n, a(n) for n = 1..10000 [first 401 terms from Matt C. Anderson]

Tony Forbes and Norman Luhn, Prime k-tuplets

Norman Luhn, The first 10^6 initial members of prime 9-tuplets | pattern: d= 0, 2, 6, 8, 12, 18, 20, 26, 30, zip archive.

MATHEMATICA

Select[Prime[Range[250000000]], Union[PrimeQ[ # +{2, 6, 8, 12, 18, 20, 26, 30}]]=={True} &] (* Vincenzo Librandi, May 27 2015 *)

PROG

(Magma) [p: p in PrimesUpTo(250000000) | forall{p+r: r in [2, 6, 8, 12, 18, 20, 26, 30] | IsPrime(p+r)}]; // Vincenzo Librandi, May 27 2015

(Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e11, 2, 6, 8, 12, 18, 20, 26, 30); # Dana Jacobsen, Sep 30 2015

(PARI) forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+12) && isprime(p+18) && isprime(p+20) && isprime(p+26) && isprime(p+30), print1(p", "))) \\ Altug Alkan, Sep 30 2015

CROSSREFS

Cf. A022546, A022547, A022548.

Sequence in context: A175889 A347849 A295173 * A346996 A086503 A275573

Adjacent sequences: A022542 A022543 A022544 * A022546 A022547 A022548

KEYWORD

nonn

AUTHOR

Warut Roonguthai

EXTENSIONS

More terms from Matt C. Anderson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 22:57 EDT 2023. Contains 361392 sequences. (Running on oeis4.)