The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022552 Numbers that are not the sum of 2 squares and a nonnegative cube. 21
 7, 15, 22, 23, 39, 55, 70, 71, 78, 87, 94, 103, 111, 115, 119, 120, 139, 167, 211, 254, 263, 267, 279, 286, 302, 311, 312, 331, 335, 342, 391, 403, 435, 454, 455, 470, 475, 499, 518, 559, 590, 595, 598, 622, 643, 659, 691, 695, 715, 727, 771 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS There are 434 terms < 6 * 10^7 of which the largest is 5042631 ~= 5 * 10^6. Is this sequence finite? - David A. Corneth, Jun 23 2018 No more terms < 10^10. - Mauro Fiorentini, Jan 26 2019 For n = 1..434, a(n) + 2 is a term of A022551. Zhi-Wei Sun conjectures that Any n can be written as x^2 + y^2 + z^3 + 0(or 2). - XU Pingya, Jun 02 2020 LINKS R. J. Mathar, David A. Corneth, Table of n, a(n) for n = 1..434 (First 325 terms from R. J. Mathar, now terms < 6 * 10^7) Steven Finch, Pattern-Avoiding Permutations [Broken link?] Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission] W. Jagy and I. Kaplansky, Sums of Squares, Cubes and Higher Powers, Experimental Mathematics, vol. 4 (1995) pp. 169-173. Zhi-Wei Sun, New Conjectures on Representations of Integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), No.2, p. 110. Index entries for sequences related to sums of squares MAPLE isA022552 := proc(n) not isA022551(n) ; end proc: n := 1: for c from 0 do if isA022552(c) then printf("%d %d\n", n, c); n := n+1 ; end if; end do: # R. J. Mathar, Sep 02 2016 MATHEMATICA max = 10^6; Table[x^2 + y^2 + z^3, {x, 0, Sqrt[max]}, {y, x, Sqrt[max - x^2]}, {z, 0, (max - x^2 - y^2)^(1/3)}] // Flatten // Union // Select[#, # <= max&]& // Complement[Range[max], #]& (* Jean-François Alcover, Mar 23 2020 *) CROSSREFS Complement of A022551. Sequence in context: A053354 A346197 A274700 * A082658 A022389 A041225 Adjacent sequences: A022549 A022550 A022551 * A022553 A022554 A022555 KEYWORD nonn AUTHOR N. J. A. Sloane, Will Jagy STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 02:01 EDT 2023. Contains 362992 sequences. (Running on oeis4.)