login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022554
a(n) = Sum_{k=0..n} floor(sqrt(k)).
18
0, 1, 2, 3, 5, 7, 9, 11, 13, 16, 19, 22, 25, 28, 31, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280
OFFSET
0,3
COMMENTS
Partial sums of A000196. - Michel Marcus, Mar 01 2016
It seems that 197 is the largest prime in this sequence. Tested for n <= 10^11. - Hugo Pfoertner, Oct 26 2020
By drawing a picture of the sum Integral_{x=0..n} ceiling(sqrt(x)) dx, one easily sees that it is equal to n*m - Sum_{k=1..m} (k^2 - 1) with m = floor(sqrt(n)), whence the formula. - M. F. Hasler, Apr 23 2022
We can prove that 197 is the largest prime in this sequence. From the formula, 6*a(n) = m*(6n - 2m^2 - 3m + 5) where m = floor(sqrt(n)). Therefore 6*a(n) is divisible by m, which means that a(n) is divisible by A060789(m). For n>48, we have m>6, so A060789(m)>1, so a(n) is not prime; testing all n up to 48, we see that a(47)=197 is the last prime. - Mikhail Lavrov, Dec 09 2023
REFERENCES
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Edition, Addison-Wesley, 1994, Eq. 3.27 on page 87.
D. E. Knuth, The Art of Computer Programming, Vol. 1, 3rd Edition, Addison-Wesley, 1997, Ex. 43 of section 1.2.4.
K. H. Rosen, Discrete Mathematics and Its Application, 6th Edition, McGraw-Hill, 2007, Ex. 25 of section 2.4.
LINKS
David A. Corneth, Table of n, a(n) for n = 0..9999 (first 1001 terms from G. C. Greubel)
M. Griffiths, More sums involving the floor function, Math. Gaz., 86 (2002), 285-287.
Michael Penn, Wringing out one more result., YouTube video, 2021.
FORMULA
a(0)=0, a(1)=1; a(n) = 2*a(n-1) - a(n-2) if n is not a perfect square; a(n) = 2*a(n-1) - a(n-2) + 1 if n is a perfect square.
a(n) = floor(sqrt(n)) * (n-1/6*(2*floor(sqrt(n))+5)*(floor(sqrt(n))-1)). - Yong Kong (ykong(AT)curagen.com), Mar 10 2001
a(n) = (2/3)*n^(3/2) - (1/2)*n + O(sqrt(n)). - Charles R Greathouse IV, Jan 12 2012
G.f.: Sum_{k>=1} x^(k^2)/(1 - x)^2. - Ilya Gutkovskiy, Dec 22 2016
a(n) = m*(n - m^2/3 - m/2 + 5/6) where m = floor(sqrt(n)). - M. F. Hasler, Apr 23 2022
EXAMPLE
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 11*x^7 + 13*x^8 + 16*x^9 + ...
MAPLE
seq(add(floor(sqrt(k)), k=0..n), n=0..59);
MATHEMATICA
Accumulate[Floor[Sqrt[Range[0, 60]]]] (* Harvey P. Dale, Feb 16 2011 *)
Table[Sum[Floor[Sqrt[i]], {i, 0, n}], {n, 0, 50}] (* G. C. Greubel, Dec 22 2016 *)
PROG
(PARI) a(n)=sum(k=1, n, sqrtint(k)) \\ Charles R Greathouse IV, Jan 12 2012
(PARI) a(n)=my(k=sqrtint(n)); k*(n-(2*k+5)/6*(k-1)) \\ Charles R Greathouse IV, Jan 12 2012
(Magma) [&+[Floor(Sqrt(k)): k in [0..n]]: n in [0..50]]; // G. C. Greubel, Feb 26 2018
(Python)
from math import isqrt
def A022554(n): return (m:=isqrt(n))*(m*(-(m<<1)-3)+6*n+5)//6 # Chai Wah Wu, Aug 03 2022
CROSSREFS
Cf. A000196 (first differences), A025224.
Sequence in context: A033055 A287374 A186390 * A097046 A248420 A011861
KEYWORD
nonn,easy
AUTHOR
Michel Tixier (tixier(AT)dyadel.net)
EXTENSIONS
More terms from Yong Kong (ykong(AT)curagen.com), Mar 10 2001
STATUS
approved