login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214036
Numbers n such that floor(sqrt(1)) + floor(sqrt(2)) + floor(sqrt(3)) + ... + floor(sqrt(n)) is prime.
1
2, 3, 4, 5, 7, 8, 10, 14, 36, 37, 39, 42, 43, 44, 46, 47
OFFSET
1,1
COMMENTS
The sequence is complete. Indeed, let s(n) be the sum of floor(sqrt(k)) for k from 1 to n. It is easy to verify that s(n^2+j), for 0 <= j < (n+1)^2-n^2, is equal to n(j+1) + n(4n+1)(n-1)/6, which is always divisible by n or by n/6 for n > 6. - Giovanni Resta, Mar 26 2014
EXAMPLE
2 is a term because floor(sqrt(1))+floor(sqrt(2)) = 1+1 = 2 is prime;
14 is a term because floor(sqrt(1))+ ... +floor(sqrt(14)) = 1+1+1+2+2+2+2+2+3+3+3+3+3+3 = 31 is prime.
MAPLE
A214036:=proc(q) local a, n; a:=0;
for n from 1 to q do a:=a+floor(sqrt(n)); if isprime(a) then print(n); fi; od; end:
A214036(10^10);
Alternative program:
A214036_bis:=proc(q) local a, j, n; a:=0;
for n from 1 to q do for j from 1 to 2*n+1 do
a:=a+n; if isprime(a) then print(n^2+j-1); fi;
od; od; end:
A214036_bis(10^10);
MATHEMATICA
Position[Accumulate[Table[Floor[Sqrt[n]], {n, 50}]], _?PrimeQ]//Flatten (* Harvey P. Dale, Apr 14 2017 *)
PROG
(PARI)
default(realprecision, 66);
sm = 0; /* sum(n>=1, floor(sqrt(n)) */
for (n=1, 10^9, sm+=sqrtint(n); if (isprime(sm), print1(n, ", ")));
/* Joerg Arndt, Mar 07 2013 */
CROSSREFS
Cf. A220953.
Sequence in context: A339279 A034296 A075745 * A100289 A255130 A054021
KEYWORD
nonn,fini,full
AUTHOR
Paolo P. Lava, Mar 06 2013
STATUS
approved