OFFSET
0,4
COMMENTS
Also number of asymmetric rooted plane trees with n+1 nodes. - Christian G. Bower
Conjecturally, number of irreducible alternating Euler sums of depth n and weight 3n.
Dimension of the degree n part of the primitive Lie algebra of the Hopf algebra CQSym (Catalan Quasi-Symmetric functions). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 22 2006
For n>0, 2*a(n) is divisible by n (cf. A268619), 12*a(n) is divisible by n^2 (cf. A268592). - Max Alekseyev, Feb 09 2016
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 336 (4.4.64)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
M. J. H. Al-Kaabi, Title, IOP Conf. Ser.: Mater. Sci. Eng. (2020) Vol. 871, 012048.
D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.
G. Labelle, P. Leroux, Enumeration of (uni- or bicolored) plane trees according to their degree distribution, Disc. Math. 157 (1996) 227-240, Eq. (1.20).
H. Munthe-Kaas and A. Lundervold, On post-Lie algebras, Lie-Butcher series and moving frames, arXiv preprint arXiv:1203.4738 [math.NA], 2012. - From N. J. A. Sloane, Sep 20 2012
J.-C. Novelli and J.-Y. Thibon, Hopf algebras and dendriform structures arising from parking functions, arXiv:math/0511200 [math.CO], 2005.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
Product_n (1-x^n)^a(n) = 2/(1+sqrt(1-4*x)); a(n) = 1/(2*n) * Sum_{d|n} mu(n/d)*C(2*d,d). Also Moebius transform of A003239. - Christian G. Bower
a(n) ~ 2^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
G.f.: 1 + Sum_{k>=1} mu(k)*log((1 - sqrt(1 - 4*x^k))/(2*x^k))/k. - Ilya Gutkovskiy, May 18 2019
EXAMPLE
a(3)=3 counts 6-periodic 000111, 001011 and 00110. a(4)=8 counts 00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101, and 00110101. - R. J. Mathar, Oct 20 2021
MAPLE
with(numtheory):
a:= n-> `if`(n=0, 1,
add(mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n)):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 21 2011
MATHEMATICA
a[n_] := Sum[MoebiusMu[n/d]*Binomial[2d, d], {d, Divisors[n]}]/(2n); a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 02 2015 *)
PROG
(PARI) a(n)=if(n<1, n==0, sumdiv(n, d, moebius(n/d)*binomial(2*d, d))/2/n)
(Python)
from sympy import mobius, binomial, divisors
def a(n):
return 1 if n == 0 else sum(mobius(n//d)*binomial(2*d, d) for d in divisors(n))//(2*n)
print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 05 2017
(Sage)
def a(n):
return 1 if n ==0 else sum(moebius(n//d)*binomial(2*d, d) for d in divisors(n))//(2*n)
# F. Chapoton, Apr 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved