login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022553
Number of binary Lyndon words containing n letters of each type; periodic binary sequences of period 2n with n zeros and n ones in each period.
32
1, 1, 1, 3, 8, 25, 75, 245, 800, 2700, 9225, 32065, 112632, 400023, 1432613, 5170575, 18783360, 68635477, 252085716, 930138521, 3446158600, 12815663595, 47820414961, 178987624513, 671825020128, 2528212128750, 9536894664375, 36054433807398, 136583760011496
OFFSET
0,4
COMMENTS
Also number of asymmetric rooted plane trees with n+1 nodes. - Christian G. Bower
Conjecturally, number of irreducible alternating Euler sums of depth n and weight 3n.
a(n+1) is inverse Euler transform of A000108. Inverse Witt transform of A006177.
Dimension of the degree n part of the primitive Lie algebra of the Hopf algebra CQSym (Catalan Quasi-Symmetric functions). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 22 2006
For n>0, 2*a(n) is divisible by n (cf. A268619), 12*a(n) is divisible by n^2 (cf. A268592). - Max Alekseyev, Feb 09 2016
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 336 (4.4.64)
LINKS
M. J. H. Al-Kaabi, Title, IOP Conf. Ser.: Mater. Sci. Eng. (2020) Vol. 871, 012048.
G. Labelle, P. Leroux, Enumeration of (uni- or bicolored) plane trees according to their degree distribution, Disc. Math. 157 (1996) 227-240, Eq. (1.20).
H. Munthe-Kaas and A. Lundervold, On post-Lie algebras, Lie-Butcher series and moving frames, arXiv preprint arXiv:1203.4738 [math.NA], 2012. - From N. J. A. Sloane, Sep 20 2012
J.-C. Novelli and J.-Y. Thibon, Hopf algebras and dendriform structures arising from parking functions, arXiv:math/0511200 [math.CO], 2005.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
a(n) = A060165(n)/2 = A007727(n)/(2*n) = A045630(n)/n.
Product_n (1-x^n)^a(n) = 2/(1+sqrt(1-4*x)); a(n) = 1/(2*n) * Sum_{d|n} mu(n/d)*C(2*d,d). Also Moebius transform of A003239. - Christian G. Bower
a(n) ~ 2^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
G.f.: 1 + Sum_{k>=1} mu(k)*log((1 - sqrt(1 - 4*x^k))/(2*x^k))/k. - Ilya Gutkovskiy, May 18 2019
EXAMPLE
a(3)=3 counts 6-periodic 000111, 001011 and 00110. a(4)=8 counts 00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101, and 00110101. - R. J. Mathar, Oct 20 2021
MAPLE
with(numtheory):
a:= n-> `if`(n=0, 1,
add(mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n)):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 21 2011
MATHEMATICA
a[n_] := Sum[MoebiusMu[n/d]*Binomial[2d, d], {d, Divisors[n]}]/(2n); a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 02 2015 *)
PROG
(PARI) a(n)=if(n<1, n==0, sumdiv(n, d, moebius(n/d)*binomial(2*d, d))/2/n)
(Python)
from sympy import mobius, binomial, divisors
def a(n):
return 1 if n == 0 else sum(mobius(n//d)*binomial(2*d, d) for d in divisors(n))//(2*n)
print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 05 2017
(Sage)
def a(n):
return 1 if n ==0 else sum(moebius(n//d)*binomial(2*d, d) for d in divisors(n))//(2*n)
# F. Chapoton, Apr 23 2020
CROSSREFS
Cf. A003239, A005354, A000740, A007727, A086655, A289978 (multiset trans.), A001037 (binary Lyndon wds.), A074655 (3 letters), A074656 (4 letters).
A diagonal of the square array described in A051168.
Sequence in context: A006177 A148788 A292778 * A292884 A148789 A088327
KEYWORD
nonn
STATUS
approved